Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Healthc Eng ; 2023: 3830857, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483302

RESUMEN

In recent years, Internet of Things (IoT) and advanced sensor technologies have gained considerable interest in linking different medical devices, patients, and healthcare professionals to improve the quality of medical services in a cost-effective manner. The evolution of the smart healthcare sector has considerably enhanced patient safety, accessibility, and operational competence while minimizing the costs incurred in healthcare services. In this background, the current study develops intelligent energy-aware thermal exchange optimization with deep learning (IEA-TEODL) model for IoT-enabled smart healthcare. The aim of the proposed IEA-TOEDL technique is to group the IoT devices into clusters and make decisions in the smart healthcare sector. The proposed IEA-TEODL technique constructs clusters using the energy-aware chaotic thermal exchange optimization-based clustering (EACTEO-C) scheme. In addition, the disease diagnosis model also intends to classify the collected healthcare data as either presence or absence of the disease. To accomplish this, the proposed IEA-TODL technique involves several subprocesses such as preprocessing, K-medoid clustering-based outlier removal, multihead attention bidirectional long short-term memory (MHA-BLSTM), and weighted salp swarm algorithm (WSSA). The utilization of outlier removal and WSSA-based hyperparameter tuning process assist in achieving enhanced classification outcomes. In order to demonstrate the enhanced outcomes of the IEA-TEODL approach, a wide range of simulations was conducted against benchmark datasets. The simulation results inferred the enhanced outcomes of the IEA-TEODL technique over recent techniques under distinct evaluation metrics.


Asunto(s)
Aprendizaje Profundo , Internet de las Cosas , Humanos , Concienciación , Instituciones de Salud , Atención a la Salud
2.
Healthcare (Basel) ; 11(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36833124

RESUMEN

Prostate cancer (PCa) is becoming one of the most frequently occurring cancers among men and causes an even greater number of deaths. Due to the complexity of tumor masses, radiologists find it difficult to identify PCa accurately. Over the years, several PCa-detecting methods have been formulated, but these methods cannot identify cancer efficiently. Artificial Intelligence (AI) has both information technologies that simulate natural or biological phenomena and human intelligence in addressing issues. AI technologies have been broadly implemented in the healthcare domain, including 3D printing, disease diagnosis, health monitoring, hospital scheduling, clinical decision support, classification and prediction, and medical data analysis. These applications significantly boost the cost-effectiveness and accuracy of healthcare services. This article introduces an Archimedes Optimization Algorithm with Deep Learning-based Prostate Cancer Classification (AOADLB-P2C) model on MRI images. The presented AOADLB-P2C model examines MRI images for the identification of PCa. To accomplish this, the AOADLB-P2C model performs pre-processing in two stages: adaptive median filtering (AMF)-based noise removal and contrast enhancement. Additionally, the presented AOADLB-P2C model extracts features via a densely connected network (DenseNet-161) model with a root-mean-square propagation (RMSProp) optimizer. Finally, the presented AOADLB-P2C model classifies PCa using the AOA with a least-squares support vector machine (LS-SVM) method. The simulation values of the presented AOADLB-P2C model are tested using a benchmark MRI dataset. The comparative experimental results demonstrate the improvements of the AOADLB-P2C model over other recent approaches.

3.
Front Physiol ; 13: 965630, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36545278

RESUMEN

Digital dermoscopy is used to identify cancer in skin lesions, and sun exposure is one of the leading causes of melanoma. It is crucial to distinguish between healthy skin and malignant lesions when using computerised lesion detection and classification. Lesion segmentation influences categorization accuracy and precision. This study introduces a novel way of classifying lesions. Hair filters, gel, bubbles, and specular reflection are all options. An improved levelling method is employed in an innovative method for detecting and removing cancerous hairs. The lesion is distinguished from the surrounding skin by the adaptive sigmoidal function; this function considers the severity of localised lesions. An improved technique for identifying a lesion from surrounding tissue is proposed in the article, followed by a classifier and available features that resulted in 94.40% accuracy and 93% success. According to research, the best method for selecting features and classifications can produce more accurate predictions before and during treatment. When the recommended strategy is put to the test using the Melanoma Skin Cancer Dataset, the recommended technique outperforms the alternative.

4.
Sensors (Basel) ; 22(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36365795

RESUMEN

Multi-Agent Systems (MAS) have been seen as an attractive area of research for civil engineering professionals to subdivide complex issues. Based on the assignment's history, nearby agents, and objective, the agent intended to take the appropriate action to complete the task. MAS models complex systems, smart grids, and computer networks. MAS has problems with agent coordination, security, and work distribution despite its use. This paper reviews MAS definitions, attributes, applications, issues, and communications. For this reason, MASs have drawn interest from computer science and civil engineering experts to solve complex difficulties by subdividing them into smaller assignments. Agents have individual responsibilities. Each agent selects the best action based on its activity history, interactions with neighbors, and purpose. MAS uses the modeling of complex systems, smart grids, and computer networks. Despite their extensive use, MAS still confronts agent coordination, security, and work distribution challenges. This study examines MAS's definitions, characteristics, applications, issues, communications, and evaluation, as well as the classification of MAS applications and difficulties, plus research references. This paper should be a helpful resource for MAS researchers and practitioners. MAS in controlling smart grids, including energy management, energy marketing, pricing, energy scheduling, reliability, network security, fault handling capability, agent-to-agent communication, SG-electrical cars, SG-building energy systems, and soft grids, have been examined. More than 100 MAS-based smart grid control publications have been reviewed, categorized, and compiled.


Asunto(s)
Redes de Comunicación de Computadores , Electricidad , Reproducibilidad de los Resultados , Asignación de Recursos
5.
Healthcare (Basel) ; 10(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35885865

RESUMEN

Effective screening provides efficient and quick diagnoses of COVID-19 and could alleviate related problems in the health care system. A prediction model that combines multiple features to assess contamination risks was established in the hope of supporting healthcare workers worldwide in triaging patients, particularly in situations with limited health care resources. Furthermore, a lack of diagnosis kits and asymptomatic cases can lead to missed or delayed diagnoses, exposing visitors, medical staff, and patients to 2019-nCoV contamination. Non-clinical techniques including data mining, expert systems, machine learning, and other artificial intelligence technologies have a crucial role to play in containment and diagnosis in the COVID-19 outbreak. This study developed Enhanced Gravitational Search Optimization with a Hybrid Deep Learning Model (EGSO-HDLM) for COVID-19 diagnoses using epidemiology data. The major aim of designing the EGSO-HDLM model was the identification and classification of COVID-19 using epidemiology data. In order to examine the epidemiology data, the EGSO-HDLM model employed a hybrid convolutional neural network with a gated recurrent unit based fusion (HCNN-GRUF) model. In addition, the hyperparameter optimization of the HCNN-GRUF model was improved by the use of the EGSO algorithm, which was derived by including the concepts of cat map and the traditional GSO algorithm. The design of the EGSO algorithm helps in reducing the ergodic problem, avoiding premature convergence, and enhancing algorithm efficiency. To demonstrate the better performance of the EGSO-HDLM model, experimental validation on a benchmark dataset was performed. The simulation results ensured the enhanced performance of the EGSO-HDLM model over recent approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA