Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891841

RESUMEN

Ailanthus altissima, an invasive plant species, exhibits pharmacological properties, but also some allergic effects on humans. This study aimed to evaluate the potential toxicity of A. altissima leaves, using a complex approach towards different organisms. The ecotoxic impact of a crude extract was investigated on seeds germination and brine shrimp lethality. Cytotoxicity was studied in vitro using non-target (haemolysis, liposomal model, fibroblast), and target (cancer cells) assays. Leaf extract at 1000 µg/mL significantly inhibited wheat and tomato germination, while no significant effects were found on parsley germination. A slight stimulatory effect on wheat and tomato germination was found at 125 µg/mL. In a brine shrimp-test, the extract showed a low toxicity at 24 h post-exposure (LC50 = 951.04 ± 28.26 µg/mL), the toxic effects increasing with the exposure time and extract concentration. Leaf extract caused low hematotoxicity. The extract was biocompatible with human gingival fibroblasts. No anti-proliferative effect was found within the concentration range of 10-500 µg/mL on malignant melanoma (MeWo) and hepatocellular carcinoma (HepG2). In a liposomal model-test, the extract proved to possess low capability to alter the eukaryotic cell-mimicking membranes within the tested concentration range. Given the low to moderate toxicity on tested organisms/cells, the A. altissima autumn leaves may find useful applications.


Asunto(s)
Ailanthus , Artemia , Extractos Vegetales , Hojas de la Planta , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ailanthus/química , Animales , Hojas de la Planta/química , Humanos , Artemia/efectos de los fármacos , Germinación/efectos de los fármacos , Células Hep G2 , Semillas/química , Fibroblastos/efectos de los fármacos , Línea Celular Tumoral
2.
J Pept Sci ; : e3609, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676397

RESUMEN

Peptide dhvar4, derived from the active domain of our salivary peptide histatin 5, bears a Phe residue in the middle of its hydrophilic face when folded into an α-helix. We then synthesized an analog with this Phe replaced by Lys and two analogs preserving Phe but bearing two and three α-aminoisobutyric acid (Aib) residues to stabilize the helical structure. The aim of this design was to verify which of the two features is more favorable to the biological activity. We performed a conformational study by means of circular dichroism and nuclear magnetic resonance, made antibacterial tests, and assessed the stability of the peptides in human serum. We observed that amphiphilicity is more important than helix stability, provided a peptide can adopt a helical conformation in a membrane-mimetic environment.

3.
J Mol Biol ; 436(9): 168541, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492719

RESUMEN

Interaction of transcription factor myocyte enhancer factor-2 (MEF2) family members with class IIa histone deacetylases (HDACs) has been implicated in a wide variety of diseases. Though considerable knowledge on this topic has been accumulated over the years, a high resolution and detailed analysis of the binding mode of multiple class IIa HDAC derived peptides with MEF2D is still lacking. To fulfil this gap, we report here the crystal structure of MEF2D in complex with double strand DNA and four different class IIa HDAC derived peptides, namely HDAC4, HDAC5, HDAC7 and HDAC9. All class IIa HDAC derived peptides form extended amphipathic α-helix structures that fit snugly in the hydrophobic groove of MEF2D domain. Binding mode of class IIa HDAC derived peptides to MEF2D is very similar and occur primarily through nonpolar interactions mediated by highly conserved branched hydrophobic amino acids. Further studies revealed that class IIa HDAC derived peptides are unstructured in solution and appear to adopt a folded α-helix structure only upon binding to MEF2D. Comparison of our peptide-protein complexes with previously characterized structures of MEF2 bound to different co-activators and co-repressors, highlighted both differences and similarities, and revealed the adaptability of MEF2 in protein-protein interactions. The elucidation of the three-dimensional structure of MEF2D in complex with multiple class IIa HDAC derived peptides provide not only a better understanding of the molecular basis of their interactions but also have implications for the development of novel antagonist.


Asunto(s)
ADN , Histona Desacetilasas , Factores de Transcripción MEF2 , Péptidos , Humanos , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN/metabolismo , ADN/química , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Factores de Transcripción MEF2/química , Factores de Transcripción MEF2/metabolismo , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Pliegue de Proteína
4.
Sci Rep ; 13(1): 15132, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704689

RESUMEN

Cathelicidins, a family of host defence peptides in vertebrates, play an important role in the innate immune response, exhibiting antimicrobial activity against many bacteria, as well as viruses and fungi. This work describes the design and synthesis of shortened analogues of porcine cathelicidin PMAP-36, which contain structural changes to improve the pharmacokinetic properties. In particular, 20-mers based on PMAP-36 (residues 12-31) and 13-mers (residues 12-24) with modification of amino acid residues at critical positions and introduction of lipid moieties of different lengths were studied to identify the physical parameters, including hydrophobicity, charge, and helical structure, required to optimise their antibacterial activity. Extensive conformational analysis, performed by CD and NMR, revealed that the substitution of Pro25-Pro26 with Ala25-Lys26 increased the α-helix content of the 20-mer peptides, resulting in broad-spectrum antibacterial activity against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus epidermidis strains. Interestingly, shortening to just 13 residues resulted in only a slight decrease in antibacterial activity. Furthermore, two sequences, a 13-mer and a 20-mer, did not show cytotoxicity against HaCat cells up to 64 µM, indicating that both derivatives are not only effective but also selective antimicrobial peptides. In the short peptide, the introduction of the helicogenic α-aminoisobutyric acid forced the helix toward a prevailing 310 structure, allowing the antimicrobial activity to be maintained. Preliminary tests of resistance to Ser protease chymotrypsin indicated that this modification resulted in a peptide with an increased in vivo lifespan. Thus, some of the PMAP-36 derivatives studied in this work show a good balance between chain length, antibacterial activity, and selectivity, so they represent a good starting point for the development of even more effective and proteolysis-resistant active peptides.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Catelicidinas , Animales , Porcinos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Antibacterianos/farmacología , Escherichia coli
5.
Cellulose (Lond) ; 30(9): 5573-5587, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304190

RESUMEN

During the last years, the need to create textile materials provided with peculiar properties has grown significantly. In particular, new textiles are studied to be a first protection in the prevention of living organisms from pathogens. In this regard, modifying a textile material with biologically active compounds, such as antibacterial or antiviral peptides would be useful for many applications. Our work shows a study on the possibility of modifying cotton fabrics with peptides using thiazolidine and oxime chemoselective ligations. For this purpose, an enzymatic oxidation of cellulose in a heterogeneous phase and the possibility to reuse the oxidation solution for multiple times was successfully applied. Model peptides have been designed and synthesized in order to set up the conditions for conjugating peptides to cotton via either thiazolidine or oxime bond. A systematic study of the time, pH, and quantities needed for the best reaction conditions has been conducted. The efficiency and stability of the two chemoselective ligation bonds have been studied and compared. Supplementary Information: The online version contains supplementary material available at 10.1007/s10570-023-05253-1.

6.
Ann Med ; 55(1): 2205659, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37143345

RESUMEN

AIM: The effect of liposomes bi-functionalized with phosphatidic acid and with a synthetic peptide derived from human apolipoprotein E has been evaluated on the aggregation features of different amyloidogenic proteins: human Amyloid ß1-40 (Aß1-40), transthyretin (TTR) variant S52P, human ß2microglobulin (ß2m) variants ΔN6 and D76N, Serum Amyloid A (SAA). METHODS: The formation of fibrillar aggregates of the proteins was investigated by ThioflavinT fluorescence assay and validated by Atomic Force Microscopy. RESULTS: The results show that liposomes are preventing the transition of non-aggregated forms to the fibrillar state, with stronger effects on Aß1-40, ß2m ΔN6 and SAA. Liposomes also induce disaggregation of the amyloid aggregates of all the proteins investigated, with stronger effects on Aß1-40, ß2 D76N and TTR.SPR assays show that liposomes bind Aß1-40 and SAA aggregates with high affinity (KD in the nanomolar range) whereas binding to TTR aggregates showed a lower affinity (KD in the micromolar range). Aggregates of ß2m variants showed both high and low affinity binding sites. Computed Structural analysis of protein fibrillar aggregates and considerations on the multidentate features of liposomes allow to speculate a common mechanism of action, based on binding the ß-stranded peptide regions responsible for the amyloid formation. CONCLUSION: Thus, multifunctional liposomes perform as pharmacological chaperones with anti-amyloidogenic activity, with a promising potential for the treatment of a number of protein-misfolding diseases.Key messageAmyloidosis is a group of diseases, each due to a specific protein misfolding.Anti-amyloidogenic nanoparticles have been gaining the utmost importance as a potential treatment for protein misfolding disorders.Liposomes bi-functionalized with phosphatidic acid and with a synthetic peptide derived from human apolipoprotein E showed anti-amyloidogenic activity.


Asunto(s)
Amiloide , Liposomas , Humanos , Amiloide/química , Amiloide/metabolismo , Agregado de Proteínas , Chaperonas Moleculares , Ácidos Fosfatidicos , Apolipoproteínas
7.
J Pept Sci ; 29(8): e3476, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36603599

RESUMEN

The results of classifying into various types the 68 examples of isolated α-turns in the X-ray diffraction crystal structures of peptides documented in the literature are presented and discussed in this review article. α-Turns characterized by the trans disposition of all ω torsion angles are common for the backbone linear peptides investigated. In contrast, the cis arrangement of the N-terminal (ωi + 1 ) torsion angle, among those generated by the three residues internal to the α-turn, is a peculiar feature of 65% of the cyclic peptides. Among linear and cyclic peptides featuring the all-trans disposition of the ω torsion angles, only one third of the α-turns display φ,ψ values not too far from those characterizing regular α-helices. In general, our findings, taken together, suggest that a significant conformational diversity is compatible with the formation of an intramolecularly H-bonded C13 -member pseudocycle (α-turn) in linear and cyclic peptides.


Asunto(s)
Péptidos Cíclicos , Péptidos , Estructura Secundaria de Proteína , Péptidos/química , Difracción de Rayos X , Enlace de Hidrógeno , Conformación Proteica
8.
Molecules ; 27(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36144860

RESUMEN

Despite the fact that peptide conjugates with a pendant ferrocenyl (Fc) have been widely investigated, bis-ferrocenyl end-capped peptides are rarely synthetized. In this paper, in addition to the full characterization of the Fc-CO-[L-Dap(Boc)]n-NH-Fc series, we report a comparison of the three series of bis-ferrocenyl homopeptides synthesized to date, to gain insights into the influence of α-amino isobutyric (Aib), 2,3-diamino propionic (Dap) and Cα,ß-didehydroalanine (ΔAla) amino acids on the peptide secondary structure and on the ferrocene redox properties. The results obtained by 2D NMR analysis and X-ray crystal structures, and further supported by electrochemical data, evidence different behaviors depending on the nature of the amino acid; that is, the formation of 310-helices or fully extended (2.05-helix) structures. In these foldamers, the orientation of the carbonyl groups in the peptide helix yields a macrodipole with the positive pole on the N-terminal amino acid and the negative pole on the C-terminal amino acid, so that oxidation of the Fc moieties takes place more or less easily depending on the orientation of the macrodipole moment as the peptide chain grows. Conversely, the fully extended conformation adopted by ΔAla flat peptides neither generates a macrodipole nor affects Fc oxidation. The utilization as electrochemical and optical (Circular Dichroism) probes of the two terminal Fc groups, bound to the same peptide chain, makes it possible to study the end-to-end effects of the positive charges produced by single and double oxidations, and to evidence the presence "exciton-coupled" CD among the two intramolecularly interacting Fc groups of the L-Dap(Boc) series.


Asunto(s)
Aminoácidos , Péptidos , Aminoácidos/química , Dicroismo Circular , Metalocenos , Oxidación-Reducción , Péptidos/química , Esqueleto
9.
Molecules ; 27(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35807480

RESUMEN

The suppression of side reactions is one of the most important objectives in peptide synthesis, where highly reactive compounds are involved. Recently, the violuric acid derivative Oxyma-B was introduced into peptide synthesis protocols as a promising additive to efficiently control the optical purity of the amino acids prone to racemization. However, we discovered a side reaction involving the Beckmann rearrangement of Oxyma-B during the coupling reaction, which compromises the yield and purity of the target peptides. Here, we present the investigation of the mechanism of this rearrangement and the optimization of the coupling reaction conditions to control it. These results can be taken into account for the design of novel efficient oxime-based coupling reagents.


Asunto(s)
Carbodiimidas , Oximas , Secuencia de Aminoácidos , Barbitúricos , Oximas/química , Péptidos/química
10.
Molecules ; 27(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458745

RESUMEN

Background: The [99mTc][Tc(N)(PNP)] system, where PNP is a bisphosphinoamine, is an interesting platform for the development of tumor 'receptor-specific' agents. Here, we compared the reactivity and impact of three [Tc(N)(PNP)] frameworks on the stability, receptor targeting properties, biodistribution, and metabolism of the corresponding [99mTc][Tc(N)(PNP)]-tagged cRGDfK peptide to determine the best performing agent and to select the framework useful for the preparation of [99mTc][Tc(N)(PNP)]-housing molecular targeting agents. Methods: cRGDfK pentapeptide was conjugated to Cys and labeled with each [Tc(N)(PNP)] framework. Radioconjugates were assessed for their lipophilicity, stability, in vitro and in vivo targeting properties, and performance. Results: All compounds were equally synthetically accessible and easy to purify (RCY ≥ 95%). The main influences of the synthon on the targeting peptide were observed in in vitro cell binding and in vivo. Conclusions: The variation in the substituents on the phosphorus atoms of the PNP enables a fine tuning of the biological features of the radioconjugates. ws[99mTc][Tc(N)(PNP3OH)]- and [99mTc][Tc(N)(PNP3)]- are better performing synthons in terms of labeling efficiency and in vivo performance than the [99mTc][Tc(N)(PNP43)] framework and are therefore more suitable for further radiopharmaceutical purposes. Furthermore, the good labeling properties of the ws[99mTc][Tc(N)(PNP3OH)]- framework can be exploited to extend this technology to the labeling of temperature-sensitive biomolecules suitable for SPECT imaging.


Asunto(s)
Compuestos de Organotecnecio , Péptidos Cíclicos , Línea Celular Tumoral , Compuestos de Organotecnecio/química , Péptidos Cíclicos/química , Radiofármacos/química , Tecnecio/química , Distribución Tisular
11.
ACS Omega ; 7(6): 5154-5165, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35187331

RESUMEN

Electron paramagnetic resonance spectroscopy, particularly its pulse technique double electron-electron resonance (DEER) (also termed PELDOR), is rapidly becoming an extremely useful tool for the experimental determination of side chain-to-side chain distances between free radicals in molecules fundamental for life, such as polypeptides. Among appropriate probes, the most popular are undoubtedly nitroxide electron spin labels. In this context, suitable biosynthetically derived, helical regions of proteins, along with synthetic peptides with amphiphilic properties and antibacterial activities, are the most extensively investigated compounds. A strict requirement for a precise distance measurement has been identified in a minimal dynamic flexibility of the two nitroxide-bearing α-amino acid side chains. To this end, in this study, we have experimentally compared in detail the side-chain mobility properties of the two currently most widely utilized residues, namely, Cys(MTSL) and 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC). In particular, two double-labeled, chemically synthesized 20-mer peptide molecules have been adopted as appropriate templates for our investigation on the determination of the model intramolecular separations. These double-Cys(MTSL) and double-TOAC compounds are both analogues of the almost completely rigid backbone peptide ruler which we have envisaged and 3D structurally analyzed as our original, unlabeled compound. Here, we have clearly found that the TOAC side-chain labels are largely more 3D structurally restricted than the MTSL labels. From this result, we conclude that the TOAC residue offers more precise information than the Cys(MTSL) residue on the side chain-to-side chain distance distribution in synthetically accessible peptide molecules.

12.
J Med Chem ; 64(21): 15973-15990, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34714648

RESUMEN

We developed a new class of inhibitors of protein-protein interactions of the SHP2 phosphatase, which is pivotal in cell signaling and represents a central target in the therapy of cancer and rare diseases. Currently available SHP2 inhibitors target the catalytic site or an allosteric pocket but lack specificity or are ineffective for disease-associated SHP2 mutants. Considering that pathogenic lesions cause signaling hyperactivation due to increased levels of SHP2 association with cognate proteins, we developed peptide-based molecules with nanomolar affinity for the N-terminal Src homology domain of SHP2, good selectivity, stability to degradation, and an affinity for pathogenic variants of SHP2 that is 2-20 times higher than for the wild-type protein. The best peptide reverted the effects of a pathogenic variant (D61G) in zebrafish embryos. Our results provide a novel route for SHP2-targeted therapies and a tool for investigating the role of protein-protein interactions in the function of SHP2.


Asunto(s)
Oncogenes , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Dominios Homologos src/efectos de los fármacos , Animales , Sitios de Unión , Mutación , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de Señal , Pez Cebra/embriología
13.
Biochemistry ; 60(36): 2704-2714, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34463474

RESUMEN

In synthetic peptides containing Gly and coded α-amino acids, one of the most common practices to enhance their helical extent is to incorporate a large number of l-Ala residues along with noncoded, strongly foldameric α-aminoisobutyric acid (Aib) units. Earlier studies have established that Aib-based peptides, with propensity for both the 310- and α-helices, have a tendency to form ordered three-dimensional structure that is much stronger than that exhibited by their l-Ala rich counterparts. However, the achiral nature of Aib induces an inherent, equal preference for the right- and left-handed helical conformations as found in Aib homopeptide stretches. This property poses challenges in the analysis of a model peptide helical conformation based on chirospectroscopic techniques like electronic circular dichroism (ECD), a very important tool for assigning secondary structures. To overcome such ambiguity, we have synthesized and investigated a thermally stable 14-mer peptide in which each of the Aib residues of our previously designed and reported analogue ABGY (where B stands for Aib) is replaced by Cα-methyl-l-valine (L-AMV). Analysis of the results described here from complementary ECD and 1H nuclear magnetic resonance spectroscopic techniques in a variety of environments firmly establishes that the L-AMV-containing peptide exhibits a significantly stronger preference compared to that of its Aib parent in terms of conferring α-helical character. Furthermore, being a chiral α-amino acid, L-AMV shows an intrinsic, extremely strong bias for a quite specific (right-handed) screw sense. These findings emphasize the relevance of L-AMV as a more appropriate unit for the design of right-handed α-helical peptide models that may be utilized as conformationally constrained scaffolds.


Asunto(s)
Aminoácidos/química , Ácidos Aminoisobutíricos/química , Péptidos/química , Valina/química , Dicroismo Circular/métodos , Modelos Moleculares , Conformación Proteica en Hélice alfa , Estructura Secundaria de Proteína
14.
J Med Chem ; 64(15): 10900-10907, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34269584

RESUMEN

The design of efficient vascular endothelial growth factor (VEGF) inhibitors is a high-priority research area aimed at the treatment of pathological angiogenesis. Among other compounds, v114* has been identified as a potent VEGF-binding peptide. In order to improve the affinity to VEGF, we built a conformational constrain in its structure. To this aim, Cα-tetrasubstituted amino acid Aib was introduced into the N-terminal tail, peptide loop, or C-terminal helix. NMR studies confirmed the stabilization of the helical conformation in proximity to the Aib residue. We found that the induction of the N-terminal helical structure or stabilization of the C-terminal helix can noticeably increase the peptide affinity to the VEGF. These peptides efficiently inhibited VEGF-stimulated cell proliferation as well. The insertion of the non-proteinogenic Aib residue significantly enhanced the stability of the peptides in the vitreous environment. Thus, these Aib-containing peptides are promising candidates for the design of VEGF inhibitors with improved properties.


Asunto(s)
Péptidos/farmacología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Modelos Moleculares , Conformación Molecular , Péptidos/síntesis química , Péptidos/química , Relación Estructura-Actividad , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Chempluschem ; 86(5): 723-730, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33825347

RESUMEN

The foldamer field is continuously expanding as it allows to produce molecules endowed with 3D-structures and functions never observed in nature. We synthesized flat foldamers based on the natural, but non-coded, Cα,ß -didehydroalanine α-amino acid, and covalently linked to them two ferrocene (Fc) moieties, as redox probes. These conjugates retain the flat and extended conformation of the 2.05 -helix, both in solution and in the crystal state (X-ray diffraction). Cyclic voltammetry measurements agree with the adoption of the 2.05 -helix, characterized by a negligible dipole moment. Thus, elongated α-peptide stretches of this type are insulators rather than charge conductors, the latter being constituted by peptide α-helices. Also, our homo-tetrapeptide has a N-to-C length of about 18.2 Å, almost double than that (9.7 Å) of an α-helical α-tetrapeptide.

16.
Biochemistry ; 60(1): 19-30, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320519

RESUMEN

Double electron-electron resonance (DEER, also known as PELDOR) and circular dichroism (CD) spectroscopies were explored for the purpose of studying the specificity of the conformation of peptides induced by their assembly into a self-recognizing system. The E and K peptides are known to form a coiled-coil heterodimer. Two paramagnetic TOAC α-amino acid residues were incorporated into each of the peptides (denoted as K** and E**), and a three-dimensional structural investigation in the presence or absence of their unlabeled counterparts E and K was performed. The TOAC spin-labels, replacing two Ala residues in each compound, are covalently and quasi-rigidly connected to the peptide backbone. They are known not to disturb the native structure, so that any conformational change can easily be monitored and assigned. DEER spectroscopy enables the measurement of the intramolecular electron spin-spin distance distribution between the two TOAC labels, within a length range of 1.5-8 nm. This method allows the individual conformational changes for the K**, K**/E, E**, and E**/K molecules to be investigated in glassy frozen solutions. Our data reveal that the conformations of the E** and K** peptides are strongly influenced by the presence of their counterparts. The results are discussed with those from CD spectroscopy and with reference to the already reported nuclear magnetic resonance data. We conclude that the combined DEER/TOAC approach allows us to obtain accurate and reliable information about the conformation of the peptides before and after their assembly into coiled-coil heterodimers. Applications of this induced fit method to other two-component, but more complex, systems, like a receptor and antagonists, a receptor and a hormone, and an enzyme and a ligand, are discussed.


Asunto(s)
Dicroismo Circular/métodos , Óxidos N-Cíclicos/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Fragmentos de Péptidos/química , Marcadores de Spin , Modelos Moleculares , Estructura Secundaria de Proteína
17.
Chemistry ; 27(8): 2810-2817, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33107646

RESUMEN

External stimuli are potent tools that Nature uses to control protein function and activity. For instance, during viral entry and exit, pH variations are known to trigger large protein conformational changes. In Nature, also the electron transfer (ET) properties of ET proteins are influenced by pH-induced conformational changes. In this work, a pH-controlled, reversible 310 -helix to α-helix conversion (from acidic to highly basic pH values and vice versa) of a peptide supramolecular system built on a gold surface is described. The effect of pH on the ability of the peptide SAM to generate a photocurrent was investigated, with particular focus on the effect of the pH-induced conformational change on photocurrent efficiency. The films were characterized by electrochemical and spectroscopic techniques, and were found to be very stable over time, also in contact with a solution. They were also able to generate current under illumination, with an efficiency that is the highest recorded so far with biomolecular systems.


Asunto(s)
Concentración de Iones de Hidrógeno , Conformación Molecular , Péptidos/química , Oro/química , Conformación Proteica
18.
Macromol Biosci ; 20(12): e2000199, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32852141

RESUMEN

A new general method to covalently link a peptide to cotton via thiazolidine ring formation is developed. Three different analogues of an ultrashort antibacterial peptide are synthesized to create an antibacterial fabric. The chemical ligation approach to the heterogeneous phase made up of insoluble cellulose fibers and a peptide solution in water is adapted. The selective click reaction occurs between an N-terminal cysteine on the peptide and an aldehyde on the cotton matrix. The aldehyde is generated on the primary alcohol of glucose by means of the enzyme laccase and the cocatalyst 2,2,6,6-tetramethylpiperidine-1-oxyl. This keeps the pyranose rings intact and may bring a benefit to the mechanical properties of the fabric. The presence of the peptide on cotton is demonstrated through instant colorimetric tests, UV spectroscopy, IR spectroscopy, and X-ray photoelectron spectroscopy analysis. The antibacterial activity of the peptides is maintained even after their covalent attachment to cotton fibers.


Asunto(s)
Antibacterianos/química , Gossypium/química , Proteínas Citotóxicas Formadoras de Poros/química , Textiles , Aldehídos/química , Celulosa/química , Fibra de Algodón , Cisteína/química , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Humanos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
19.
Molecules ; 25(7)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260104

RESUMEN

Polyphenols are an important constituent of wines and they are largely studied due to their antioxidant properties and for their effects on wine quality and stability, which is also related to their capacity to bind to proteins. The effects of some selected polyphenols, including procyanidins B1 and B2, tannic acid, quercetin, and rutin, as well as those of a total white wine procyanidin extract on the conformational properties of the major wine protein VVTL1 (Vitis vinifera Thaumatin-Like-1) were investigated by Synchrotron Radiation Circular Dichroism (SRCD). Results showed that VVTL1 interacts with polyphenols as demonstrated by the changes in the secondary (far-UV) and tertiary (near-UV) structures, which were differently affected by different polyphenols. Additionally, polyphenols modified the two melting temperatures (TM) that were found for VVTL1 (32.2 °C and 53.9 °C for the protein alone). The circular dichroism (CD) spectra in the near-UV region revealed an involvement of the aromatic side-chains of the protein in the interaction with phenolics. The data demonstrate the existence of an interaction between polyphenols and VVTL1, which results in modification of its thermal and UV denaturation pattern. This information can be useful in understanding the behavior of wine proteins in presence of polyphenols, thus giving new insights on the phenomena that are involved in wine stability.


Asunto(s)
Antígenos de Plantas/química , Polifenoles/química , Vitis/metabolismo , Dicroismo Circular , Calidad de los Alimentos , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Termodinámica , Temperatura de Transición , Vitis/química
20.
ChemMedChem ; 14(12): 1162-1172, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31091012

RESUMEN

This work is focused on the synthesis, characterization, and preliminary biological evaluation of bio-conjugated AuIII and CuII complexes with the aim of overcoming the well-known side effects of chemotherapy by improving the selective accumulation of an anticancer metal payload in malignant cells. For this purpose, carbohydrates were chosen as targeting agents, exploiting the Warburg effect that accounts for the overexpression of glucose-transporter proteins (in particular GLUTs) in the phospholipid bilayer of most neoplastic cells. We linked the dithiocarbamato moiety to the C1 position of three different monosaccharides: d-glucose, d-galactose, and d-mannose. Altogether, six complexes with a 1:2 metal-to-ligand stoichiometry were synthesized and in vitro tested as anticancer agents. One of them showed high cytotoxic activity toward the HCT116 colorectal human carcinoma cell line, paving the way to future in vivo studies aimed at evaluating the role of carbohydrates in the selective delivery of whole molecules into cancerous cells.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Cobre/farmacología , Oro/farmacología , Tiocarbamatos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cobre/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Oro/química , Células HCT116 , Humanos , Estructura Molecular , Relación Estructura-Actividad , Tiocarbamatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA