Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1112, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326309

RESUMEN

Microbes are increasingly employed as cell factories to produce biomolecules. This often involves the expression of complex heterologous biosynthesis pathways in host strains. Achieving maximal product yields and avoiding build-up of (toxic) intermediates requires balanced expression of every pathway gene. However, despite progress in metabolic modeling, the optimization of gene expression still heavily relies on trial-and-error. Here, we report an approach for in vivo, multiplexed Gene Expression Modification by LoxPsym-Cre Recombination (GEMbLeR). GEMbLeR exploits orthogonal LoxPsym sites to independently shuffle promoter and terminator modules at distinct genomic loci. This approach facilitates creation of large strain libraries, in which expression of every pathway gene ranges over 120-fold and each strain harbors a unique expression profile. When applied to the biosynthetic pathway of astaxanthin, an industrially relevant antioxidant, a single round of GEMbLeR improved pathway flux and doubled production titers. Together, this shows that GEMbLeR allows rapid and efficient gene expression optimization in heterologous biosynthetic pathways, offering possibilities for enhancing the performance of microbial cell factories.


Asunto(s)
Recombinasas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Recombinasas/metabolismo , Vías Biosintéticas/genética , Edición Génica , Expresión Génica , Ingeniería Metabólica
2.
Food Chem ; 398: 133863, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35961173

RESUMEN

Beer quality generally diminishes over time as staling compounds accumulate through various oxidation reactions. Here, we show that refermentation, a traditional practice where Saccharomyces cerevisiae cells are added to beer prior to bottling, diminishes the accumulation of staling aldehydes. However, commonly used beer yeasts only show a limited lifespan in beer. Using high-throughput screening and breeding, we were able to generate novel S. cerevisiae hybrids that survive for over a year in beer. Extensive chemical and sensory analyses of the two most promising hybrids showed that they slow down the accumulation of staling aldehydes, such as furfural and trans-2-nonenal and significantly increased beer flavor stability for up to 12 months. Moreover, the strains did not change the original flavor of the beer, highlighting their potential to be integrated in existing products. Together, these results demonstrate the ability to breed novel microbes that function as natural and sustainable anti-oxidative food preservatives.


Asunto(s)
Cerveza , Saccharomyces cerevisiae , Aldehídos/análisis , Cerveza/análisis , Fermentación , Fitomejoramiento , Saccharomyces cerevisiae/genética
3.
EMBO J ; 40(22): e107958, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34617598

RESUMEN

Cells dynamically adapt organelle size to current physiological demand. Organelle growth requires membrane biogenesis and therefore needs to be coordinated with lipid metabolism. The endoplasmic reticulum (ER) can undergo massive expansion, but the underlying regulatory mechanisms are largely unclear. Here, we describe a genetic screen for factors involved in ER membrane expansion in budding yeast and identify the ER transmembrane protein Ice2 as a strong hit. We show that Ice2 promotes ER membrane biogenesis by opposing the phosphatidic acid phosphatase Pah1, called lipin in metazoa. Specifically, Ice2 inhibits the conserved Nem1-Spo7 complex and thus suppresses the dephosphorylation and activation of Pah1. Furthermore, Ice2 cooperates with the transcriptional regulation of lipid synthesis genes and helps to maintain cell homeostasis during ER stress. These findings establish the control of the lipin phosphatase complex as an important mechanism for regulating ER membrane biogenesis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidato Fosfatasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico , Regulación Fúngica de la Expresión Génica , Metabolismo de los Lípidos , Proteínas de la Membrana/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Compuestos Orgánicos/metabolismo , Fosfatidato Fosfatasa/genética , Fosforilación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Respuesta de Proteína Desplegada
4.
Nat Commun ; 11(1): 3664, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694532

RESUMEN

Ethanol is a ubiquitous environmental stressor that is toxic to all lifeforms. Here, we use the model eukaryote Saccharomyces cerevisiae to show that exposure to sublethal ethanol concentrations causes DNA replication stress and an increased mutation rate. Specifically, we find that ethanol slows down replication and affects localization of Mrc1, a conserved protein that helps stabilize the replisome. In addition, ethanol exposure also results in the recruitment of error-prone DNA polymerases to the replication fork. Interestingly, preventing this recruitment through mutagenesis of the PCNA/Pol30 polymerase clamp or deleting specific error-prone polymerases abolishes the mutagenic effect of ethanol. Taken together, this suggests that the mutagenic effect depends on a complex mechanism, where dysfunctional replication forks lead to recruitment of error-prone polymerases. Apart from providing a general mechanistic framework for the mutagenic effect of ethanol, our findings may also provide a route to better understand and prevent ethanol-associated carcinogenesis in higher eukaryotes.


Asunto(s)
Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , Etanol/toxicidad , Tasa de Mutación , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/genética , Mutagénesis , Pruebas de Mutagenicidad , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
EMBO J ; 39(2): e102586, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31802527

RESUMEN

ER-phagy, the selective autophagy of endoplasmic reticulum (ER), safeguards organelle homeostasis by eliminating misfolded proteins and regulating ER size. ER-phagy can occur by macroautophagic and microautophagic mechanisms. While dedicated machinery for macro-ER-phagy has been discovered, the molecules and mechanisms mediating micro-ER-phagy remain unknown. Here, we first show that micro-ER-phagy in yeast involves the conversion of stacked cisternal ER into multilamellar ER whorls during microautophagic uptake into lysosomes. Second, we identify the conserved Nem1-Spo7 phosphatase complex and the ESCRT machinery as key components for micro-ER-phagy. Third, we demonstrate that macro- and micro-ER-phagy are parallel pathways with distinct molecular requirements. Finally, we provide evidence that the ESCRT machinery directly functions in scission of the lysosomal membrane to complete the microautophagic uptake of ER. These findings establish a framework for a mechanistic understanding of micro-ER-phagy and, thus, a comprehensive appreciation of the role of autophagy in ER homeostasis.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte , Membranas Intracelulares/metabolismo , Microautofagia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Homeostasis , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Curr Protoc Microbiol ; 54(1): e91, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31518063

RESUMEN

Beer would not exist without microbes. During fermentation, yeast cells convert cereal-derived sugars into ethanol and CO2 . Yeast also produces a wide array of aroma compounds that influence beer taste and aroma. The complex interaction between all these aroma compounds results in each beer having its own distinctive palette. This article contains all protocols needed to brew beer in a standard lab environment and focuses on the use of yeast in beer brewing. More specifically, it provides protocols for yeast propagation, brewing calculations and, of course, beer brewing. At the end, we have also included protocols for analyses that can be performed on the resulting brew, with a focus on yeast-derived aroma compounds. © 2019 The Authors.


Asunto(s)
Cerveza/microbiología , Manipulación de Alimentos/métodos , Microbiología de Alimentos/métodos , Saccharomyces cerevisiae/metabolismo , Espectrofotometría/métodos , Cerveza/análisis , Grano Comestible/química , Grano Comestible/metabolismo , Grano Comestible/microbiología , Etanol/análisis , Etanol/metabolismo , Fermentación
7.
Mol Cell ; 70(6): 1025-1037.e5, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29861160

RESUMEN

When faced with proteotoxic stress, cells mount adaptive responses to eliminate aberrant proteins. Adaptive responses increase the expression of protein folding and degradation factors to enhance the cellular quality control machinery. However, it is unclear whether and how this augmented machinery acquires new activities during stress. Here, we uncover a regulatory cascade in budding yeast that consists of the hydrophilin protein Roq1/Yjl144w, the HtrA-type protease Ynm3/Nma111, and the ubiquitin ligase Ubr1. Various stresses stimulate ROQ1 transcription. The Roq1 protein is cleaved by Ynm3. Cleaved Roq1 interacts with Ubr1, transforming its substrate specificity. Altered substrate recognition by Ubr1 accelerates proteasomal degradation of misfolded as well as native proteins at the endoplasmic reticulum membrane and in the cytosol. We term this pathway stress-induced homeostatically regulated protein degradation (SHRED) and propose that it promotes physiological adaptation by reprogramming a key component of the quality control machinery.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Proteolisis , Saccharomyces cerevisiae/enzimología , Serina Endopeptidasas/metabolismo , Estrés Fisiológico/fisiología , Especificidad por Sustrato , Ubiquitina/metabolismo
8.
Biochem Biophys Res Commun ; 496(4): 1082-1087, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29397069

RESUMEN

The translation initiation machinery is emerging as an important target for therapeutic intervention, with potential in the treatment of cancer, viral infections, and muscle wasting. Amongst the targets for pharmacological control of translation initiation is the eukaryotic initiation factor 4A (eIF4A), an RNA helicase that is essential for cap-dependent translation initiation. We set out to explore the system-wide impact of a reduction of functional eIF4A. To this end, we investigated the effect of deletion of TIF1, one of the duplicate genes that produce eIF4A in yeast, through synthetic genetic array interactions and system-wide changes in GFP-tagged protein abundances. We show that there is a biological response to deletion of the TIF1 gene that extends through the proteostasis network. Effects of the deletion are apparent in processes as distributed as chromatin remodelling, ribosome biogenesis, amino acid metabolism, and protein trafficking. The results from this study identify protein complexes and pathways that will make ideal targets for combination therapies with eIF4A inhibitors.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Factor 4A Eucariótico de Iniciación/genética , Pérdida de Heterocigocidad/genética , Biosíntesis de Proteínas/genética , Transporte de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regulación Fúngica de la Expresión Génica/genética
9.
Mol Biosyst ; 10(7): 1790-802, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24722431

RESUMEN

Basal ER stress occurs when proteins misfold in normal physiological conditions and are corrected by the unfolded protein response (UPR). Elevated ER stress occurs when misfolding is refractory as found in numerous diseases such as atherosclerosis, Type II diabetes and some cancers. In elevated ER stress it is unclear whether cells utilise the same or different networks of genes as in basal levels of ER stress. To probe this question, we used secretory pathway reporters Yip3p-GFP, Erv29p-GFP, Orm2p-GFP and UPREpr-GFP placed on the yeast deletion mutant array (DMA) genetic background. The reporter's expression levels, measured by automated microscopy, at basal versus elevated ER stress induced by the over-expression of CPY* were compared. A novel group of kinetochore genes (CTF19 complex) were found to be uniquely required for full induction of all four ER stress reporters in elevated stress. A follow-up reporter screen was developed by mating the ctf19Δ kinetochore gene deletion strain into the genome-wide XXXp-GFP tagged library then testing with over-expressed CPY*. This screen identified Bcy1p and Bfr1p as possible signalling points that down-regulate the UPR and secretory pathway when kinetochore proteins are absent under elevated stress conditions. Bfr1p appears to be a checkpoint that monitors the integrity of kinetochores at increased levels of ER stress. This study concludes that functional kinetochores are required for full activation of the secretory pathway in elevated ER stress and that the responses to basal and elevated levels of ER stress require different networks of genes.


Asunto(s)
Carboxipeptidasas/genética , Proteínas del Citoesqueleto/metabolismo , Estrés del Retículo Endoplásmico , Cinetocoros/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Vías Secretoras , Proteínas del Citoesqueleto/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Macrólidos/farmacología , Vías Secretoras/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
10.
Mol Biosyst ; 10(1): 128-37, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24201294

RESUMEN

The pleiotropic drug response (PDR) or multidrug resistance (MDR) are cellular defence mechanisms present in all species to deal with potential toxicity from environmental small molecule toxins or bioactives. The rapid induction of MDR by xenobiotics in mammalian cells and PDR in budding yeast (S. cerevisiae) has been well studied but how pathway specificity is achieved across different structural classes of xenobiotics is not well understood. As a novel approach to this problem we investigated the genome-wide network of genes modulating the yeast PDR. Fluorescently-tagged ABC pumps Pdr5p-GFP and Yor1p-GFP were used as real-time reporters for the Pdr1p/Pdr3p controlled response. Using the yeast non-essential gene deletion set fifty-four gene deletions that suppressed up-regulation of reporter fluorescence to the cell surface in the presence of atorvastatin were identified by high content confocal automated microscopy. Secondary validation using spot dilution assays to known PDR substrates and Western blot assays of Pdr5p expression confirmed 26 genes able to modulate the PDR phenotype. By analysis of network connectivity, an additional 10 genes that fell below the primary screen cut-off were predicted to be involved in PDR and confirmed as above. The PDR modulating genes taken together were enriched in signalling (Rho-GTPase, MAPK), Mediator complexes, and chromatin modification (subunits of ADA and SAGA complexes). Many of the gene deletions cause extra sensitivity in Δpdr1Δpdr3 strains strongly suggesting that there are alternative pathways to upregulate PDR, independently of Pdr1p/Pdr3p. We present here the first high-content microscopy screening for PDR modulators, and identify genes that are previously unsuspected regulators of PDR apparently contributing via network interactions.


Asunto(s)
Resistencia a Múltiples Medicamentos/genética , Redes Reguladoras de Genes , Proteínas de Saccharomyces cerevisiae/biosíntesis , Transducción de Señal/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Atorvastatina , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Ácidos Heptanoicos/farmacología , Pirroles/farmacología , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética
11.
Mol Biosyst ; 9(8): 2125-33, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23715404

RESUMEN

Tetramic acids constitute a large class of natural products isolated from a variety of different fungal and bacterial species. While the presence of the distinctive 2,4-pyrrolidinedione ring system defines this class of compounds, these compounds are widely diverse both structurally and in the biological activities that they display. Equisetin-like compounds are tetramic acids that have been shown to be growth inhibitory towards bacteria, fungi, yeasts and mammalian cell lines; however, the mechanisms inhibiting prokaryotic and eukaryotic cell growth have not been fully explained. Here we report the isolation and biological characterisation of a novel equisetin-like tetramic acid named tetramic acid-289 (TA-289) produced by a Fusarium sp. fungus. This compound displayed pH- and carbon source-dependent cytotoxic effects in Saccharomyces cerevisiae and caused an irreversible cell cycle block via a microtubule independent mechanism. To fully elucidate a mechanism, we used an unbiased approach employing chemogenomic profiling of the yeast deletion library and demonstrated that TA-289 hypersensitive deletion strains are also sensitive to oxidants, respiratory inhibitors and have abnormal mitochondrial morphology. In support of the hypothesis that TA-289 perturbs mitochondrial function, we demonstrated the ability of this compound to generate reactive oxygen species only during fermentative growth, an effect reliant on an intact electron transport chain. In addition, mitochondrial morphological defects were detected upon exposure to TA-289 independent of the increase in oxidative stress. The generation of reactive oxygen species was not the sole cause of cell death by TA-289, as only partial amelioration of cell death was achieved by the deletion of genes encoding components of the electron transport chain, despite these deletions causing attenuation of the magnitude of oxidative stress. We propose that TA-289 induces cell death via the direct inhibition of a mitochondrially localised target or targets, and that the mitochondrial morphology defect and ROS production observed in this study is a direct consequence of the induction of cell death. This study highlights the complex interplay between mitochondrial function, cell death and the generation of reactive oxygen species when elucidating the mode-of-action of compounds that cause oxidative stress and cell death, and further deepens the mystery surrounding the molecular basis of the activity of equisetin-like compounds.


Asunto(s)
Antifúngicos/farmacología , Mitocondrias/efectos de los fármacos , Pirrolidinonas/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Antifúngicos/síntesis química , Ciclo Celular/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Concentración de Iones de Hidrógeno , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Estrés Oxidativo , Pirrolidinonas/síntesis química , Pirrolidinonas/química , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Tetrahidronaftalenos/química
12.
Mol Biosyst ; 7(9): 2589-98, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21731954

RESUMEN

We developed a procedure for automated confocal microscopy to image the effect of the non-essential yeast gene deletion set on the localisation of the plasma membrane GFP-labelled protein Mrh1p-GFP. To achieve this it was necessary to devise an expression system expressing Redstar2 RFP-fluorescence specifically in the nucleus, mCherry RFP at a lower intensity in the cytoplasm and Mrh1p-GFP in the plasma membrane. This fluorescence labelling scheme utilising specifically designed image analysis scripts allowed automated segmentation of the cells into sub-regions comprising nuclei, cytoplasm and cell-surface. From this high-throughput high content screening approach we were able to determine that gene deletions including emc1Δ, emc2Δ, emc3Δ, emc4Δ, emc5Δ and emc6Δ, caused intracellular mislocalisation at the ER of a plasma membrane protein Mrh1p-GFP. CPY processing patterns were unaffected in these mutants and collectively our data suggest a transport role for the EMC genes within the early secretory pathway. HAC1 is central to the unfolded protein response (UPR) and in its absence, i.e. the absence of UPR, emc1Δ-, emc3Δ-, emc4Δ-, emc5Δ-hac1Δ double mutants were specifically hypersensitive to ER-stress (tunicamycin) lending credence to the usefulness of the high content microscope screening for discovery of functional effects of single mutants.


Asunto(s)
Microscopía Confocal/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
FEMS Yeast Res ; 8(6): 897-905, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18657191

RESUMEN

Most investigations into plasma membrane electron transport (PMET) in Saccharomyces cerevisiae have focused on the inducible ferric reductase responsible for iron uptake under iron/copper-limiting conditions. In this paper, we describe a PMET system, distinct from ferric reductase, which reduces the cell-impermeable water-soluble tetrazolium dye, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulphophenyl)-2H-tetrazolium monosodium salt (WST-1), under normal iron/copper conditions. WST-1/1-methoxy-phenazine methosulphate reduction was unaffected by anoxia and relatively insensitive to diphenyleneiodonium. Dye reduction was increased when intracellular NADH levels were high, which, in S. cerevisiae, required deletion of numerous genes associated with NADH recycling. Genome-wide screening of all viable nuclear gene-deletion mutants of S. cerevisiae revealed that, although mitochondrial electron transport per se was not required, the presence of several nuclear and mitochondrially encoded subunits of respiratory complexes III and IV was mandatory for PMET. This suggests some form of interaction between components of mitochondrial and plasma membrane electron transport. In support of this, mitochondrial tubular networks in S. cerevisiae were shown to be located in close proximity to the plasma membrane using confocal microscopy.


Asunto(s)
Membrana Celular/fisiología , Complejo III de Transporte de Electrones/metabolismo , Transporte de Electrón , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Microscopía Confocal , Mitocondrias/ultraestructura , NAD/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...