Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Transl Immunology ; 13(3): e1497, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495918

RESUMEN

Objectives: Donor haematopoietic stem cell transplantation treats leukaemia by inducing graft-versus-leukaemia (GVL) immunity. However, this benefit is often mitigated by graft-versus-host disease (GVHD), which is reduced by post-transplant cyclophosphamide (PTCy) alone or combined with tocilizumab (TOC) in humanised mice. This study established a preclinical humanised mouse model of GVL and investigated whether PTCy alone or combined with TOC impacts GVL immunity. Methods: NOD-scid-IL2Rγnull mice were injected with 2 × 107 human peripheral blood mononuclear cells (hPBMCs) on day 0 and with 1 × 106 THP-1 acute myeloid leukaemia cells on day 14. In subsequent experiments, mice were also injected with PTCy (33 mg kg-1) or Dulbecco's phosphate buffered saline (PBS) on days 3 and 4, alone or combined with TOC or control antibody (25 mg kg-1) twice weekly for 28 days. Clinical signs of disease were monitored until day 42. Results: Mice with hPBMCs from three different donors and THP-1 cells showed similar survival, clinical score and weight loss. hCD33+ leukaemia cells were minimal in mice reconstituted with hPBMCs from two donors but present in mice with hPBMCs from a third donor, suggesting donor-specific GVL responses. hPBMC-injected mice treated with PTCy alone or combined with TOC (PTCy + TOC) demonstrated prolonged survival compared to control mice. PTCy alone and PTCy + TOC-treated mice with hPBMCs showed minimal hepatic hCD33+ leukaemia cells, indicating sustained GVL immunity. Further, the combination of PTCy + TOC reduced histological damage in the lung and liver. Conclusion: Collectively, this research demonstrates that PTCy alone or combined with TOC impairs GVHD without compromising GVL immunity.

2.
Methods Mol Biol ; 2510: 315-340, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35776334

RESUMEN

Humanized mouse models of graft-versus-host disease (GVHD), where human immune cells are injected into immune deficient mice, are well established and provide opportunities to investigate pathways involved in GVHD development. This chapter provides an overview of human immune cell isolation, injection of these cells into immune deficient mice, monitoring of mice for signs of GVHD, and assessment of human cell engraftment using flow cytometry. Further, this chapter focuses on the P2X7 signaling pathway involved in GVHD, and describes a strategy to block the P2X7 receptor and examine the effect of this on GVHD development.


Asunto(s)
Enfermedad Injerto contra Huésped , Receptores Purinérgicos P2X7 , Animales , Separación Celular , Modelos Animales de Enfermedad , Citometría de Flujo , Enfermedad Injerto contra Huésped/etiología , Ratones , Receptores Purinérgicos P2X7/genética
3.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34361109

RESUMEN

Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for blood cancers and other haematological disorders. However, allo-HSCT leads to graft-versus-host disease (GVHD), a severe and often lethal immunological response, in the majority of transplant recipients. Current therapies for GVHD are limited and often reduce the effectiveness of allo-HSCT. Therefore, pro- and anti-inflammatory factors contributing to disease need to be explored in order to identify new treatment targets. Purinergic signalling plays important roles in haematopoiesis, inflammation and immunity, and recent evidence suggests that it can also affect haematopoietic stem cell transplantation and GVHD development. This review provides a detailed assessment of the emerging roles of purinergic receptors, most notably P2X7, P2Y2 and A2A receptors, and ectoenzymes, CD39 and CD73, in GVHD.


Asunto(s)
Enfermedad Injerto contra Huésped/terapia , Neoplasias Hematológicas/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Receptores Purinérgicos/metabolismo , Transducción de Señal , Animales , Enfermedad Injerto contra Huésped/metabolismo , Enfermedad Injerto contra Huésped/patología , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Humanos , Trasplante Homólogo
4.
Immunology ; 164(2): 332-347, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34021907

RESUMEN

Graft-versus-host disease (GVHD) is a major complication of allogeneic haematopoietic stem cell transplantation (allo-HSCT) that develops when donor T cells in the graft become reactive against the host. Post-transplant cyclophosphamide (PTCy) is increasingly used in mismatched allo-HSCT, but how PTCy impacts donor T cells and reduces GVHD is unclear. This study aimed to determine the effect of PTCy on reactive human donor T cells and GVHD development in a preclinical humanized mouse model. Immunodeficient NOD-scid-IL2Rγnull mice were injected intraperitoneally (i.p.) with 20 × 106 human peripheral blood mononuclear cells stained with carboxyfluorescein succinimidyl ester (CFSE) (day 0). Mice were subsequently injected (i.p.) with PTCy (33 mg kg-1 ) (PTCy-mice) or saline (saline-mice) (days 3 and 4). Mice were assessed for T-cell depletion on day 6 and monitored for GVHD for up to 10 weeks. Flow cytometric analysis of livers at day 6 revealed lower proportions of reactive (CFSElow ) human (h) CD3+ T cells in PTCy-mice compared with saline-mice. Over 10 weeks, PTCy-mice showed reduced weight loss and clinical GVHD, with prolonged survival and reduced histological liver GVHD compared with saline-mice. PTCy-mice also demonstrated increased splenic hCD4+ :hCD8+ T-cell ratios and reduced splenic Tregs (hCD4+  hCD25+  hCD127lo ) compared with saline-mice. This study demonstrates that PTCy reduces GVHD in a preclinical humanized mouse model. This corresponded to depletion of reactive human donor T cells, but fewer human Tregs.


Asunto(s)
Ciclofosfamida/inmunología , Enfermedad Injerto contra Huésped/inmunología , Linfocitos T Reguladores/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Leucocitos Mononucleares/inmunología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Donantes de Tejidos , Trasplante Homólogo/métodos
5.
Artículo en Inglés | MEDLINE | ID: mdl-33571606

RESUMEN

Methadone maintenance treatment (MMT) is the most common treatment for opioid-dependent pregnant women worldwide. Despite its widespread use, MMT is associated with a variety of adverse neurodevelopmental outcomes in exposed offspring, particularly cognitive impairments. The neurobiological abnormalities underlying these cognitive impairments are, however, poorly understood. This is, in part, due to a lack of animal models that represents the standard of care that methadone is administered in the clinic, with inconsistencies in the timing, doses and durations of treatment. Here we describe the characterisation of a clinically relevant rat model of MMT in which the long-term behavioural and neurobiological effects of prenatal methadone exposure can be assessed in adolescent offspring. Female Sprague-Dawley rats were treated orally with an ascending methadone dosage schedule (5, 10, 15, 20, 25 and 30 mg/kg/day), self-administered in drinking water prior to conception, throughout gestation and lactation. Pregnancy success, maternal gestational weight gain, litter survival and size were not significantly altered in methadone-exposed animals. Methadone-exposed offspring body and brain weights were significantly lower at birth. Novel object recognition tests performed at adolescence revealed methadone-exposed offspring had impaired recognition memory. Furthermore, the rewarded T-maze alternation task demonstrated that methadone-exposed female, but not male, offspring also exhibit working memory and learning deficits. Immunoblots of the adolescent prefrontal cortex and hippocampus showed methadone-exposed offspring displayed reduced levels of mature BDNF, in addition to the GABAergic proteins, GAD67 and parvalbumin, in a sex- and brain region-specific fashion. This rat model closely emulates the clinical scenario in which methadone is administered to opioid-dependent pregnant woman and provides evidence MMT can cause cognitive impairments in adolescent offspring that may be underlined by perturbed neurodevelopment of the GABAergic system.


Asunto(s)
Analgésicos Opioides/efectos adversos , Cognición/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Metadona/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Analgésicos Opioides/administración & dosificación , Animales , Encéfalo/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Metadona/administración & dosificación , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA