Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6089, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789027

RESUMEN

Nanoscale electro-mechanical systems (NEMS) displaying piezoresistance offer unique measurement opportunities at the sub-cellular level, in detectors and sensors, and in emerging generations of integrated electronic devices. Here, we show a single-molecule NEMS piezoresistor that operates utilising constitutional and conformational isomerisation of individual diaryl-bullvalene molecules and can be switched at 850 Hz. Observations are made using scanning tunnelling microscopy break junction (STMBJ) techniques to characterise piezoresistance, combined with blinking (current-time) experiments that follow single-molecule reactions in real time. A kinetic Monte Carlo methodology (KMC) is developed to simulate isomerisation on the experimental timescale, parameterised using density-functional theory (DFT) combined with non-equilibrium Green's function (NEGF) calculations. Results indicate that piezoresistance is controlled by both constitutional and conformational isomerisation, occurring at rates that are either fast (equilibrium) or slow (non-equilibrium) compared to the experimental timescale. Two different types of STMBJ traces are observed, one typical of traditional experiments that are interpreted in terms of intramolecular isomerisation occurring on stable tipped-shaped metal-contact junctions, and another attributed to arise from junction‒interface restructuring induced by bullvalene isomerisation.

2.
Angew Chem Int Ed Engl ; 61(9): e202115468, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-34854191

RESUMEN

A fluxional bis-monodentate ligand, based on the archetypal shape-shifting molecule bullvalene, self-assembles with M2+ (M=Pd2+ or Pt2+ ) to produce a highly complex ensemble of permanently fluxional coordination cages. Metal-mediated self-assembly selects for an M2 L4 architecture while maintaining shape-shifting ligand complexity. A second level of simplification is achieved with guest-exchange; the binding of halides within the M2 L4 cage mixture results in a convergence to a cage species with all four ligands present as the "B isomer". Within this confine, the reaction graph of the bullvalene is greatly restricted, but gives rise to a mixture of 38 possible diastereoisomers in rapid exchange. X-ray crystallography reveals a preference for an achiral form consisting of both ligand enantiomers. Through a combination of NMR spectroscopy and DFT calculations, we elucidate the restricted isomerisation pathway of the permanently fluxional M2 L4 assembly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...