Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Mucosal Immunol ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38750968

Crohn's disease (CD) is an inflammatory bowel disease that can affect any part of the gastrointestinal tract, frequently involving the terminal ileum. While colonic mucus alterations in CD patients have been described, terminal ileal mucus and its mechanobiological properties have been neglected. Our study is the first of its kind to decipher the viscoelastic and network properties of ileal mucus. With that aim, oscillatory rheological shear measurements based on an airway mucus protocol that was thoroughly validated for ileal mucus were performed. Our pilot study analyzed terminal ileum mucus from controls (n = 14) and CD patients (n = 14). Mucus network structure was visualized by scanning electron microscopy. Interestingly, a statistically significant increase in viscoelasticity as well as a decrease in mesh size was observed in ileal mucus from CD patients compared to controls. Furthermore, rheological data were analyzed in relation to study participants' clinical characteristics, revealing a noteworthy trend between non-smokers and smokers. In conclusion, this study provides the first data on the viscoelastic properties and structure of human ileal mucus in the healthy state and Crohn's disease, demonstrating significant alterations between groups and highlighting the need for further research on mucus and its effect on the underlying epithelial barrier.

2.
J Neurooncol ; 167(1): 155-167, 2024 Mar.
Article En | MEDLINE | ID: mdl-38358406

BACKGROUND: Emerging evidence suggests that treatment of NSCLC brain metastases with immune checkpoint inhibitors (ICIs) is associated with response rates similar to those of extracranial disease. Programmed death-ligand 1 (PD-L1) tumor proportion score (TPS) serves as a predictive biomarker for ICI response. However, the predictive value of brain metastasis-specific (intracranial) PD-L1 TPS is not established. We investigated the role of intra- and extracranial PD-L1 TPS in NSCLC patients treated with ICI following brain metastasis resection. METHODS: Clinical data from NSCLC patients treated with ICI following brain metastasis resection (n = 64) were analyzed. PD-L1 TPS of brain metastases (n = 64) and available matched extracranial tumor tissue (n = 44) were assessed via immunohistochemistry. Statistical analyses included cut point estimation via maximally selected rank statistics, Kaplan-Meier estimates, and multivariable Cox regression analysis for intracranial progression-free survival (icPFS), extracranial progression-free survival (ecPFS), and overall survival (OS). RESULTS: PD-L1 expression was found in 54.7% of brain metastases and 68.2% of extracranial tumor tissues, with a median intra- and extracranial PD-L1 TPS of 7.5% (0 - 50%, IQR) and 15.0% (0 - 80%, IQR), respectively. In matched tissue samples, extracranial PD-L1 TPS was significantly higher than intracranial PD-L1 TPS (p = 0.013). Optimal cut points for intracranial and extracranial PD-L1 TPS varied according to outcome parameter assessed. Notably, patients with a high intracranial PD-L1 TPS (> 40%) exhibited significantly longer icPFS as compared to patients with a low intracranial PD-L1 TPS (≤ 40%). The cut point of 40% for intracranial PD-L1 TPS was independently associated with OS, icPFS and ecPFS in multivariable analyses. CONCLUSION: Our study highlights the potential role of intracranial PD-L1 TPS in NSCLC, which could be used to predict ICI response in cases where extracranial tissue is not available for PD-L1 assessment as well as to specifically predict intracranial response.


Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/surgery , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/surgery , Brain Neoplasms/drug therapy , Brain Neoplasms/surgery , Retrospective Studies
3.
BMC Endocr Disord ; 24(1): 25, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38383419

BACKGROUND: Anaplastic thyroid cancer (ATC) is a rare and aggressive neoplasm. We still lack effective treatment options, so survival rates remain very low. Here, we aimed to evaluate the activity of the combination of lenvatinib and pembrolizumab as systemic first-line therapy in ATC. METHODS: In a retrospective analysis, we investigated the activity and tolerability of combined lenvatinib (starting dose 14 to 24 mg daily) and pembrolizumab (200 mg every three weeks) as first-line therapy in an institutional cohort of ATC patients. RESULTS: Five patients with metastatic ATC received lenvatinib and pembrolizumab as systemic first-line therapy. The median progression-free survival was 4.7 (range 0.8-5.9) months, and the median overall survival was 6.3 (range 0.8-not reached) months. At the first follow-up, one patient had partial response, three patients had stable disease, and one patient was formally not evaluable due to interference of assessment by concomitant acute infectious thyroiditis. This patient was then stable for more than one year and was still on therapy at the data cutoff without disease progression. Further analyses revealed deficient DNA mismatch repair, high CD8+ lymphocyte infiltration, and low macrophage infiltration in this patient. Of the other patients, two had progressive disease after adverse drug reactions and therapy de-escalation, and two died after the first staging. For all patients, the PD-L1 combined positive score ranged from 12 to 100%. CONCLUSIONS: The combination of lenvatinib and pembrolizumab was effective and moderately tolerated in treatment-naïve ATC patients with occasional long-lasting response. However, we could not confirm the exceptional responses for this combination therapy reported before in pretreated patients.


Antibodies, Monoclonal, Humanized , Phenylurea Compounds , Quinolines , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/pathology , Retrospective Studies , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology
4.
Cell Oncol (Dordr) ; 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38300468

PURPOSE: Single-cell transcriptional profiling reveals cell heterogeneity and clinically relevant traits in intra-operatively collected patient-derived tissue. So far, single-cell studies have been constrained by the requirement for prospectively collected fresh or cryopreserved tissue. This limitation might be overcome by recent technical developments enabling single-cell analysis of FFPE tissue. METHODS: We benchmark single-cell profiles from patient-matched fresh, cryopreserved and archival FFPE cancer tissue. RESULTS: We find that fresh tissue and FFPE routine blocks can be employed for the robust detection of clinically relevant traits on the single-cell level. Specifically, single-cell maps of fresh patient tissues and corresponding FFPE tissue blocks could be integrated into common low-dimensional representations, and cell subtype clusters showed highly correlated transcriptional strengths of signaling pathway, hallmark, and clinically useful signatures, although expression of single genes varied due to technological differences. FFPE tissue blocks revealed higher cell diversity compared to fresh tissue. In contrast, single-cell profiling of cryopreserved tissue was prone to artifacts in the clinical setting. CONCLUSION: Our analysis highlights the potential of single-cell profiling in the analysis of retrospectively and prospectively collected archival pathology cohorts and increases the applicability in translational research.

5.
J Thorac Oncol ; 19(5): 803-817, 2024 May.
Article En | MEDLINE | ID: mdl-38096950

INTRODUCTION: Programmed death-ligand 1 expression currently represents the only validated predictive biomarker for immune checkpoint inhibition in metastatic NSCLC in the clinical routine, but it has limited value in distinguishing responses. Assessment of KRAS and TP53 mutations (mut) as surrogate for an immunosupportive tumor microenvironment (TME) might help to close this gap. METHODS: A total of 696 consecutive patients with programmed death-ligand 1-high (≥50%), nonsquamous NSCLC, having received molecular testing within the German National Network Genomic Medicine Lung Cancer between 2017 and 2020, with Eastern Cooperative Oncology Group performance status less than or equal to 1 and pembrolizumab as first-line palliative treatment, were included into this retrospective cohort analysis. Treatment efficacy and outcome according to KRAS/TP53 status were correlated with TME composition and gene expression analysis of The Cancer Genome Atlas lung adenocarcinoma cohort. RESULTS: Proportion of KRASmut and TP53mut was 53% (G12C 25%, non-G12C 28%) and 51%, respectively. In KRASmut patients, TP53 comutations increased response rates (G12C: 69.7% versus 46.5% [TP53mut versus wild-type (wt)], p = 0.004; non-G12C: 55.4% versus 39.5%, p = 0.03), progression-free survival (G12C: hazard ratio [HR] = 0.59, p = 0.009, non-G12C: HR = 0.7, p = 0.047), and overall survival (G12C: HR = 0.72, p = 0.16, non-G12C: HR = 0.56, p = 0.002), whereas no differences were observed in KRASwt patients. After a median follow-up of 41 months, G12C/TP53mut patients experienced the longest progression-free survival and overall survival (33.7 and 65.3 mo), which correlated with high tumor-infiltrating lymphocyte densities in the TME and up-regulation of interferon gamma target genes. Proinflammatory pathways according to TP53 status (mut versus wt) were less enhanced and not different in non-G12C and KRASwt, respectively. CONCLUSIONS: G12C/TP53 comutations identify a subset of patients with a very favorable long-term survival with immune checkpoint inhibitor monotherapy, mediated by highly active interferon gamma signaling in a proinflammatory TME.


Antibodies, Monoclonal, Humanized , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mutation , Proto-Oncogene Proteins p21(ras) , Tumor Suppressor Protein p53 , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Male , Female , Antibodies, Monoclonal, Humanized/therapeutic use , Tumor Suppressor Protein p53/genetics , Aged , Retrospective Studies , Middle Aged , Germany , Antineoplastic Agents, Immunological/therapeutic use , Aged, 80 and over , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Adult , Treatment Outcome
6.
Neoplasia ; 44: 100934, 2023 10.
Article En | MEDLINE | ID: mdl-37703626

BACKGROUND: The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) plays a crucial role in regulating the immune system's response to tumors, but its exact role in cancer, especially in high-grade serous ovarian cancer (HGSOC), remains controversial. We aimed to investigate the prognostic impact of IDO1 expression and its correlation with tumor-infiltrating lymphocytes (TILs) in HGSOC. METHODS: Immunohistochemical (IHC) staining and bioimage analysis using the QuPath software were employed to assess IDO1 protein expression in a well-characterized cohort of 507 patients with primary HGSOC. Statistical evaluation was performed using SPSS, and in silico validation considering IDO1 mRNA expression in bulk and single-cell gene expression datasets was conducted. Additionally, IDO1 expression in interferon-gamma (IFNG) stimulated HGSOC cell lines was analyzed. RESULTS: Our findings revealed that IDO1 protein and mRNA expression serve as positive prognostic markers for overall survival (OS) and progression-free survival (PFS) in HGSOC. High IDO1 expression was associated with a significant improvement in OS by 21 months (p < 0.001) and PFS by 6 months (p = 0.016). Notably, elevated IDO1 expression correlated with an increased number of CD3+ (p < 0.001), CD4+ (p < 0.001), and CD8+ TILs (p < 0.001). Furthermore, high IDO1 mRNA expression and protein level were found to be associated with enhanced responsiveness to pro-inflammatory cytokines, particularly IFNG. CONCLUSIONS: Our study provides evidence that IDO1 expression serves as a positive prognostic marker in HGSOC and is associated with an increased number of CD3+, CD4+ and CD8+ TILs. Understanding the intricate relationship between IDO1, TILs, and the tumor microenvironment may hold the key to improving outcomes in HGSOC.


Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating , Prognosis , Carcinoma, Ovarian Epithelial/pathology , RNA, Messenger , Tumor Microenvironment/genetics
7.
Hum Pathol ; 141: 158-168, 2023 Nov.
Article En | MEDLINE | ID: mdl-37742945

Low-density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a member of the LDL receptor family and has often been discussed as a tumor suppressor gene, as its down-regulation is correlated with a poor prognosis in multiple carcinoma entities. Due to the high metastasis rate into the fatty peritoneal cavity and current research findings showing a dysregulation of lipid metabolism in tubo-ovarian high-grade serous carcinoma (HGSC), we questioned the prognostic impact of the LRP1B protein expression. We examined a well-characterized large cohort of 571 patients with primary HGSC and analyzed the LRP1B protein expression via immunohistochemical staining (both in tumor and stroma cells separately), performed precise bioimage analysis with QuPath, and calculated the prognostic impact using SPSS. Our results demonstrate that LRP1B functions as a significant prognostic marker for overall survival (OS) and progression-free survival (PFS) in HGSC on the protein level. High cytoplasmic expression of LRP1B in tumor, stroma, and combined tumor and stroma cells has a significantly positive association with a mean prolongation of the OS by 42 months (P = .005), 29 months (P = .005), and 25 months (P = .001), respectively. Additionally, the mean PFS was 18 months longer in tumor (P = .002), 19 months in stroma (P = .004), and 19 months in both cell types combined (P = .01). Our results remained significant in multivariate analysis. We envision LRP1B as a potential prognostic tool that could help us understand the functional role of lipid metabolism in advanced HGSC, especially regarding liposomal medications.


Cystadenocarcinoma, Serous , Fallopian Tube Neoplasms , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/pathology , Prognosis , Cystadenocarcinoma, Serous/pathology , Progression-Free Survival , Fallopian Tube Neoplasms/pathology , Receptors, LDL/therapeutic use
8.
Pharmaceutics ; 15(7)2023 Jul 19.
Article En | MEDLINE | ID: mdl-37514167

Claudins regulate paracellular permeability, contribute to epithelial polarization and are dysregulated during inflammation and carcinogenesis. Variants of the claudin-binding domain of Clostridium perfringens enterotoxin (cCPE) are highly sensitive protein ligands for generic detection of a broad spectrum of claudins. Here, we investigated the preferential binding of YFP- or GST-cCPE fusion proteins to non-junctional claudin molecules. Plate reader assays, flow cytometry and microscopy were used to assess the binding of YFP- or GST-cCPE to non-junctional claudins in multiple in vitro and ex vivo models of human and rat gastrointestinal epithelia and to monitor formation of a tight junction barrier. Furthermore, YFP-cCPE was used to probe expression, polar localization and dysregulation of claudins in patient-derived organoids generated from gastric dysplasia and gastric cancer. Live-cell imaging and immunocytochemistry revealed cell polarity and presence of tight junctions in glandular organoids (originating from intestinal-type gastric cancer and gastric dysplasia) and, in contrast, a disrupted diffusion barrier for granular organoids (originating from discohesive tumor areas). In sum, we report the use of cCPE fusion proteins as molecular probes to specifically and efficiently detect claudin expression, localization and tight junction dysregulation in cell lines, tissue explants and patient-derived organoids of the gastrointestinal tract.

9.
J Ovarian Res ; 16(1): 150, 2023 Jul 31.
Article En | MEDLINE | ID: mdl-37525239

BACKGROUND: Mechanisms of development and progression of high-grade serous ovarian cancer (HGSOC) are poorly understood. EVI1 and PARP1, part of TGF-ß pathway, are upregulated in cancers with DNA repair deficiencies with DNA repair deficiencies and may influce disease progression and survival. Therefore we questioned the prognostic significance of protein expression of EVI1 alone and in combination with PARP1 and analyzed them in a cohort of patients with HGSOC. METHODS: For 562 HGSOC patients, we evaluated EVI1 and PARP1 expression by immunohistochemical staining on tissue microarrays with QuPath digital semi-automatic positive cell detection. RESULTS: High EVI1 expressing (> 30% positive tumor cells) HGSOC were associated with improved progression-free survival (PFS) (HR = 0.66, 95% CI: 0.504-0.852, p = 0.002) and overall survival (OS) (HR = 0.45, 95% CI: 0.352-0.563, p < 0.001), including multivariate analysis. Most interestingly, mutual high expression of both proteins identifies a group with particularly good prognosis. Our findings were proven technically and clinically using bioinformatical data sets for single-cell sequencing, copy number variation and gene as well as protein expression. CONCLUSIONS: EVI1 and PARP1 are robust prognostic biomarkers for favorable prognosis in HGSOC and imply further research with respect to their reciprocity.


MDS1 and EVI1 Complex Locus Protein , Ovarian Neoplasms , Poly (ADP-Ribose) Polymerase-1 , Humans , Female , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Biomarkers, Tumor/genetics , MDS1 and EVI1 Complex Locus Protein/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Prognosis , Middle Aged
10.
Nucleic Acids Res ; 51(4): e20, 2023 02 28.
Article En | MEDLINE | ID: mdl-36629274

The molecular heterogeneity of cancer cells contributes to the often partial response to targeted therapies and relapse of disease due to the escape of resistant cell populations. While single-cell sequencing has started to improve our understanding of this heterogeneity, it offers a mostly descriptive view on cellular types and states. To obtain more functional insights, we propose scGeneRAI, an explainable deep learning approach that uses layer-wise relevance propagation (LRP) to infer gene regulatory networks from static single-cell RNA sequencing data for individual cells. We benchmark our method with synthetic data and apply it to single-cell RNA sequencing data of a cohort of human lung cancers. From the predicted single-cell networks our approach reveals characteristic network patterns for tumor cells and normal epithelial cells and identifies subnetworks that are observed only in (subgroups of) tumor cells of certain patients. While current state-of-the-art methods are limited by their ability to only predict average networks for cell populations, our approach facilitates the reconstruction of networks down to the level of single cells which can be utilized to characterize the heterogeneity of gene regulation within and across tumors.


Deep Learning , Gene Regulatory Networks , Neoplasms , Single-Cell Gene Expression Analysis , Humans , Gene Expression Regulation , Neoplasms/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology
11.
Cancers (Basel) ; 14(19)2022 Sep 23.
Article En | MEDLINE | ID: mdl-36230542

RGS2 regulates G-protein signaling by accelerating hydrolysis of GTP and has been identified as a potentially druggable target in carcinomas. Since the prognosis of patients with high-grade serous ovarian carcinoma (HGSOC) remains utterly poor, new therapeutic options are urgently needed. Previous in vitro studies have linked RGS2 suppression to chemoresistance in HGSOC, but in situ data are still missing. In this study, we characterized the expression of RGS2 and its relation to prognosis in HGSOC on the protein level by immunohistochemistry in 519 patients treated at Charité, on the mRNA level in 299 cases from TCGA and on the single-cell level in 19 cases from publicly available datasets. We found that RGS2 is barely detectable on the mRNA level in both bulk tissue (median 8.2. normalized mRNA reads) and single-cell data (median 0 normalized counts), but variably present on the protein level (median 34.5% positive tumor cells, moderate/strong expression in approximately 50% of samples). Interestingly, low expression of RGS2 had a negative impact on overall survival (p = 0.037) and progression-free survival (p = 0.058) on the protein level in lower FIGO stages and in the absence of residual tumor burden. A similar trend was detected on the mRNA level. Our results indicated a significant prognostic impact of RGS2 protein suppression in HGSOC. Due to diverging expression patterns of RGS2 on mRNA and protein levels, posttranslational modification of RGS2 is likely. Our findings warrant further research to unravel the functional role of RGS2 in HGSOC, especially in the light of new drug discovery.

12.
Transplant Proc ; 54(7): 1854-1858, 2022 Sep.
Article En | MEDLINE | ID: mdl-35933233

Metamizole, or dipyrone, is a frequently prescribed analgetic drug that can cause drug-induced liver injury (DILI). Still, there are only a few metamizole-associated DILI cases (n = 61, including our study) described in the literature. So far liver transplantation has been reported in 6 patients with metamizole-induced acute liver failure. In 2020, a German group described a bigger cohort (n = 23) of metamizole-related DILI. Shortly thereafter, this issue gained wider attention as the German Federal Institute for Drugs and Medical Devices published a Direct Healthcare Professional Communication, emphasizing DILI as a potential adverse event caused by metamizole. We herein report 2 patients that were admitted to our liver transplant center due to acute liver failure (ALF) in April and May 2021. Both patients reported intake of metamizole as pain medication over a few weeks. After ruling out alternative reasons for ALF and fulfilling the King's College criteria both patients received emergency liver transplantations in our center. Pathology assessment of both explants were consistent with metamizole-associated DILI. As illustrated by our 2 cases of metamizole-induced liver failure with subsequent liver transplantation, this rare but presumably often overlooked adverse drug effect of metamizole should be considered as differential diagnosis in cases of cryptogenic liver failure.


Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Liver Failure, Acute , Liver Transplantation , Humans , Dipyrone/adverse effects , Liver Transplantation/adverse effects , Liver Failure, Acute/chemically induced , Liver Failure, Acute/diagnosis , Liver Failure, Acute/surgery , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/surgery
13.
Int J Cancer ; 150(12): 2058-2071, 2022 06 15.
Article En | MEDLINE | ID: mdl-35262195

Lung carcinoid tumors, also referred to as pulmonary neuroendocrine tumors or lung carcinoids, are rare neoplasms of the lung with a more favorable prognosis than other subtypes of lung cancer. Still, some patients suffer from relapsed disease and metastatic spread. Several recent single-cell studies have provided detailed insights into the cellular heterogeneity of more common lung cancers, such as adeno- and squamous cell carcinoma. However, the characteristics of lung carcinoids on the single-cell level are yet completely unknown. To study the cellular composition and single-cell gene expression profiles in lung carcinoids, we applied single-cell RNA sequencing to three lung carcinoid tumor samples and normal lung tissue. The single-cell transcriptomes of carcinoid tumor cells reflected intertumoral heterogeneity associated with clinicopathological features, such as tumor necrosis and proliferation index. The immune microenvironment was specifically enriched in noninflammatory monocyte-derived myeloid cells. Tumor-associated endothelial cells were characterized by distinct gene expression profiles. A spectrum of vascular smooth muscle cells and pericytes predominated the stromal microenvironment. We found a small proportion of myofibroblasts exhibiting features reminiscent of cancer-associated fibroblasts. Stromal and immune cells exhibited potential paracrine interactions which may shape the microenvironment via NOTCH, VEGF, TGFß and JAK/STAT signaling. Moreover, single-cell gene signatures of pericytes and myofibroblasts demonstrated prognostic value in bulk gene expression data. Here, we provide first comprehensive insights into the cellular composition and single-cell gene expression profiles in lung carcinoids, demonstrating the noninflammatory and vessel-rich nature of their tumor microenvironment, and outlining relevant intercellular interactions which could serve as future therapeutic targets.


Carcinoid Tumor , Carcinoma, Neuroendocrine , Lung Neoplasms , Neuroendocrine Tumors , Carcinoid Tumor/genetics , Carcinoid Tumor/metabolism , Carcinoid Tumor/pathology , Carcinoma, Neuroendocrine/pathology , Endothelial Cells/metabolism , Humans , Lung/pathology , Lung Neoplasms/pathology , Neuroendocrine Tumors/pathology , Prognosis , Tumor Microenvironment/genetics
14.
Oncogene ; 40(50): 6748-6758, 2021 12.
Article En | MEDLINE | ID: mdl-34663877

Recent developments in immuno-oncology demonstrate that not only cancer cells, but also the tumor microenvironment can guide precision medicine. A comprehensive and in-depth characterization of the tumor microenvironment is challenging since its cell populations are diverse and can be important even if scarce. To identify clinically relevant microenvironmental and cancer features, we applied single-cell RNA sequencing to ten human lung adenocarcinomas and ten normal control tissues. Our analyses revealed heterogeneous carcinoma cell transcriptomes reflecting histological grade and oncogenic pathway activities, and two distinct microenvironmental patterns. The immune-activated CP²E microenvironment was composed of cancer-associated myofibroblasts, proinflammatory monocyte-derived macrophages, plasmacytoid dendritic cells and exhausted CD8+ T cells, and was prognostically unfavorable. In contrast, the inert N³MC microenvironment was characterized by normal-like myofibroblasts, non-inflammatory monocyte-derived macrophages, NK cells, myeloid dendritic cells and conventional T cells, and was associated with a favorable prognosis. Microenvironmental marker genes and signatures identified in single-cell profiles had progonostic value in bulk tumor profiles. In summary, single-cell RNA profiling of lung adenocarcinoma provides additional prognostic information based on the microenvironment, and may help to predict therapy response and to reveal possible target cell populations for future therapeutic approaches.


Adenocarcinoma of Lung/pathology , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Single-Cell Analysis/methods , Transcriptome , Tumor Microenvironment , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Biomarkers, Tumor/genetics , CD8-Positive T-Lymphocytes/immunology , Gene Expression Profiling , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Prognosis , Survival Rate
15.
EMBO Mol Med ; 13(10): e14123, 2021 10 07.
Article En | MEDLINE | ID: mdl-34409732

In colorectal cancer, oncogenic mutations transform a hierarchically organized and homeostatic epithelium into invasive cancer tissue lacking visible organization. We sought to define transcriptional states of colorectal cancer cells and signals controlling their development by performing single-cell transcriptome analysis of tumors and matched non-cancerous tissues of twelve colorectal cancer patients. We defined patient-overarching colorectal cancer cell clusters characterized by differential activities of oncogenic signaling pathways such as mitogen-activated protein kinase and oncogenic traits such as replication stress. RNA metabolic labeling and assessment of RNA velocity in patient-derived organoids revealed developmental trajectories of colorectal cancer cells organized along a mitogen-activated protein kinase activity gradient. This was in contrast to normal colon organoid cells developing along graded Wnt activity. Experimental targeting of EGFR-BRAF-MEK in cancer organoids affected signaling and gene expression contingent on predictive KRAS/BRAF mutations and induced cell plasticity overriding default developmental trajectories. Our results highlight directional cancer cell development as a driver of non-genetic cancer cell heterogeneity and re-routing of trajectories as a response to targeted therapy.


Colorectal Neoplasms , Colorectal Neoplasms/genetics , Humans , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases , Mutation , Oncogenes
16.
Sci Rep ; 11(1): 4263, 2021 02 19.
Article En | MEDLINE | ID: mdl-33608563

Infection by the new corona virus strain SARS-CoV-2 and its related syndrome COVID-19 has been associated with more than two million deaths worldwide. Patients of higher age and with preexisting chronic health conditions are at an increased risk of fatal disease outcome. However, detailed information on causes of death and the contribution of pre-existing health conditions to death yet is missing, which can be reliably established by autopsy only. We performed full body autopsies on 26 patients that had died after SARS-CoV-2 infection and COVID-19 at the Charité University Hospital Berlin, Germany, or at associated teaching hospitals. We systematically evaluated causes of death and pre-existing health conditions. Additionally, clinical records and death certificates were evaluated. We report findings on causes of death and comorbidities of 26 decedents that had clinically presented with severe COVID-19. We found that septic shock and multi organ failure was the most common immediate cause of death, often due to suppurative pulmonary infection. Respiratory failure due to diffuse alveolar damage presented as immediate cause of death in fewer cases. Several comorbidities, such as hypertension, ischemic heart disease, and obesity were present in the vast majority of patients. Our findings reveal that causes of death were directly related to COVID-19 in the majority of decedents, while they appear not to be an immediate result of preexisting health conditions and comorbidities. We therefore suggest that the majority of patients had died of COVID-19 with only contributory implications of preexisting health conditions to the mechanism of death.


COVID-19/mortality , Cause of Death , Hospital Mortality , Adult , Aged , Aged, 80 and over , Autopsy , Berlin/epidemiology , COVID-19/complications , COVID-19/therapy , COVID-19/virology , Comorbidity , Female , Hospitals, Teaching/statistics & numerical data , Humans , Hypertension/epidemiology , Male , Middle Aged , Multiple Organ Failure/mortality , Multiple Organ Failure/virology , Myocardial Ischemia/epidemiology , Obesity/epidemiology , Prospective Studies , SARS-CoV-2/isolation & purification , Shock, Septic/mortality , Shock, Septic/virology
17.
Medicine (Baltimore) ; 100(1): e23835, 2021 Jan 08.
Article En | MEDLINE | ID: mdl-33429744

ABSTRACT: Immune check-point inhibitors (ICIs) have changed our view on how to treat cancer. Despite their approval in treatment of many different cancers, efficacy of immune check-point inhibitors (ICI) in neuroendocrine neoplasia is limited and poorly understood. Established treatment options of neuroendocrine tumors (NET) and neuroendocrine carcinomas (NECs) are based on surgery, tumor-targeted medical treatments, Peptide Receptor Radionuclide Therapy (PRRT), and locoregional therapies. However, in many patients these treatments lose efficacy over time, and novel therapies are urgently needed. We report on 8 patients diagnosed with neuroendocrine neoplasms (NEN) that were treated with ICI (pembrolizumab, avelumab, nivolumab plus ipilimumab) as salvage therapy. In this cohort, we observed tumor response with partial remission in 3 patients and stable disease in 1 patient. Four patients showed progressive disease. Of note, responses were observed both in PD-L1 positive and PD-L1 negative patients. Here, we discuss clinical courses of these patients in the context of available literature to highlight limitations and drawbacks currently preventing the use of ICI in routine management of patients with NEN.


Carcinoma, Neuroendocrine/drug therapy , Immune Checkpoint Inhibitors/pharmacology , Adult , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Carcinoma, Neuroendocrine/pathology , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Ipilimumab/pharmacology , Ipilimumab/therapeutic use , Male , Middle Aged , Nivolumab/pharmacology , Nivolumab/therapeutic use , Tertiary Care Centers/organization & administration , Tertiary Care Centers/trends
18.
iScience ; 23(11): 101683, 2020 Nov 20.
Article En | MEDLINE | ID: mdl-33163938

Estrogens play an important role in the development and progression of human cancers, particularly in breast cancer. Breast cancer progression depends on the malignant destabilization of adherens junctions (AJs) and disruption of tissue integrity. We found that estrogen receptor alpha (ERα) inhibition led to a striking spatial reorganization of AJs and microclustering of E-Cadherin (E-Cad) in the cell membrane of breast cancer cells. This resulted in increased stability of AJs and cell stiffness and a reduction of cell motility. These effects were actomyosin-dependent and reversible by estrogens. Detailed investigations showed that the ERα target gene and epidermal growth factor receptor (EGFR) ligand Amphiregulin (AREG) essentially regulates AJ reorganization and E-Cad microclustering. Our results not only describe a biological mechanism for the organization of AJs and the modulation of mechanical properties of cells but also provide a new perspective on how estrogens and anti-estrogens might influence the formation of breast tumors.

19.
BMC Cancer ; 20(1): 1151, 2020 Nov 26.
Article En | MEDLINE | ID: mdl-33243186

An amendment to this paper has been published and can be accessed via the original article.

20.
BMC Cancer ; 20(1): 1038, 2020 Oct 28.
Article En | MEDLINE | ID: mdl-33115416

BACKGROUND: ß-catenin activation plays a crucial role for tumourigenesis in the large intestine but except for Lynch syndrome (LS) associated cancers stabilizing mutations of ß-catenin gene (CTNNB1) are rare in colorectal cancer (CRC). Previous animal studies provide an explanation for this observation. They showed that CTNNB1 mutations induced transformation in the colon only when CTNNB1 was homozygously mutated or when membranous ß-catenin binding was hampered by E-cadherin haploinsufficiency. We were interested, if these mechanisms are also found in human CTNNB1 mutated CRCs. RESULTS: Among 869 CRCs stabilizing CTNNB1 mutations were found in 27 cases. Homo- or hemizygous CTNNB1 mutations were detected in 74% of CTNNB1 mutated CRCs (13 microsatellite instabile (MSI-H), 7 microsatellite stabile (MSS)) but only in 3% (1/33) of extracolonic CTNNB1 mutated cancers. In contrast to MSS CRC, CTNNB1 mutations at codon 41 or 45 were highly selected in MSI-H CRC. Of the examined three CRC cell lines, ß-catenin and E-cadherin expression was similar in cell lines without or with hetereozygous CTNNB1 mutations (DLD1 and HCT116), while a reduced E-cadherin expression combined with cytoplasmic accumulation of ß-catenin was found in a cell line with homozygous CTNNB1 mutation (LS180). Reduced expression of E-cadherin in human MSI-H CRC tissue was identified in 60% of investigated cancers, but no association with the CTNNB1 mutational status was found. CONCLUSIONS: In conclusion, this study shows that in contrast to extracolonic cancers stabilizing CTNNB1 mutations in CRC are commonly homo- or hemizygous indicating a higher threshold of ß-catenin stabilization to be required for transformation in the colon as compared to extracolonic sites. Moreover, we found different mutational hotspots in CTNNB1 for MSI-H and MSS CRCs suggesting a selection of different effects on ß-catenin stabilization according to the molecular pathway of tumourigenesis. Reduced E-cadherin expression in CRC may further contribute to higher levels of transcriptionally active ß-catenin, but it is not directly linked to the CTNNB1 mutational status.


Antigens, CD/metabolism , Biomarkers, Tumor/genetics , Cadherins/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Homozygote , Mutation , beta Catenin/genetics , Antigens, CD/genetics , Cadherins/genetics , Colorectal Neoplasms/metabolism , Humans , Microsatellite Instability , Prognosis
...