Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell ; 187(16): 4150-4175, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121846

RESUMEN

Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.


Asunto(s)
Senescencia Celular , Humanos , Animales , Biomarcadores/metabolismo , Guías como Asunto , Neoplasias/patología
3.
Genome Med ; 16(1): 85, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956711

RESUMEN

BACKGROUND: Restraining or slowing ageing hallmarks at the cellular level have been proposed as a route to increased organismal lifespan and healthspan. Consequently, there is great interest in anti-ageing drug discovery. However, this currently requires laborious and lengthy longevity analysis. Here, we present a novel screening readout for the expedited discovery of compounds that restrain ageing of cell populations in vitro and enable extension of in vivo lifespan. METHODS: Using Illumina methylation arrays, we monitored DNA methylation changes accompanying long-term passaging of adult primary human cells in culture. This enabled us to develop, test, and validate the CellPopAge Clock, an epigenetic clock with underlying algorithm, unique among existing epigenetic clocks for its design to detect anti-ageing compounds in vitro. Additionally, we measured markers of senescence and performed longevity experiments in vivo in Drosophila, to further validate our approach to discover novel anti-ageing compounds. Finally, we bench mark our epigenetic clock with other available epigenetic clocks to consolidate its usefulness and specialisation for primary cells in culture. RESULTS: We developed a novel epigenetic clock, the CellPopAge Clock, to accurately monitor the age of a population of adult human primary cells. We find that the CellPopAge Clock can detect decelerated passage-based ageing of human primary cells treated with rapamycin or trametinib, well-established longevity drugs. We then utilise the CellPopAge Clock as a screening tool for the identification of compounds which decelerate ageing of cell populations, uncovering novel anti-ageing drugs, torin2 and dactolisib (BEZ-235). We demonstrate that delayed epigenetic ageing in human primary cells treated with anti-ageing compounds is accompanied by a reduction in senescence and ageing biomarkers. Finally, we extend our screening platform in vivo by taking advantage of a specially formulated holidic medium for increased drug bioavailability in Drosophila. We show that the novel anti-ageing drugs, torin2 and dactolisib (BEZ-235), increase longevity in vivo. CONCLUSIONS: Our method expands the scope of CpG methylation profiling to accurately and rapidly detecting anti-ageing potential of drugs using human cells in vitro, and in vivo, providing a novel accelerated discovery platform to test sought after anti-ageing compounds and geroprotectors.


Asunto(s)
Envejecimiento , Metilación de ADN , Longevidad , Humanos , Animales , Metilación de ADN/efectos de los fármacos , Longevidad/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Descubrimiento de Drogas/métodos , Senescencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Drosophila , Células Cultivadas , Sirolimus/farmacología
4.
EMBO Rep ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918502

RESUMEN

Cellular senescence is a hallmark of advanced age and a major instigator of numerous inflammatory pathologies. While endothelial cell (EC) senescence is aligned with defective vascular functionality, its impact on fundamental inflammatory responses in vivo at single-cell level remain unclear. To directly investigate the role of EC senescence on dynamics of neutrophil-venular wall interactions, we applied high resolution confocal intravital microscopy to inflamed tissues of an EC-specific progeroid mouse model, characterized by profound indicators of EC senescence. Progerin-expressing ECs supported prolonged neutrophil adhesion and crawling in a cell autonomous manner that additionally mediated neutrophil-dependent microvascular leakage. Transcriptomic and immunofluorescence analysis of inflamed tissues identified elevated levels of EC CXCL1 on progerin-expressing ECs and functional blockade of CXCL1 suppressed the dysregulated neutrophil responses elicited by senescent ECs. Similarly, cultured progerin-expressing human ECs exhibited a senescent phenotype, were pro-inflammatory and prompted increased neutrophil attachment and activation. Collectively, our findings support the concept that senescent ECs drive excessive inflammation and provide new insights into the mode, dynamics, and mechanisms of this response at single-cell level.

6.
ACS Omega ; 8(45): 42356-42366, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38024711

RESUMEN

The extracts of Aquilaria crassna pericarp were investigated on the MDA-MB-468, a breast cancer cell line, at desired concentration (1-50 µg/mL). The results showed that the dichloromethane (DCM) extract exhibited the strongest toxicity and was carried out subsequently. A total of nine compounds were isolated from the DCM extract using column chromatography and recrystallization, of which their structures were determined. Intriguingly, in addition to the previously reported compounds, neocucurbitacin A, a cucurbitacin triterpenoid aglycone with a lactone in ring A, was reported for the first time in the Aquilaria genus. Among the isolated compounds, cucurbitacin E highly inhibited MDA-MB-468 cell growth in a dose-dependent manner. Owing to binding abilities with the SH2 domain in the molecular docking study, cucurbitacin E, neocucurbitan A, neocucurbitan B, and cucurbitacin E 2-O-ß-d-glucopyranoside act as STAT3 inhibitors and are suitable for further research. This study suggests thatAquilaria crassnafruits could serve as a promising source of natural compounds with potential anticancer effects, particularly against breast cancer.

7.
Cell Metab ; 35(10): 1675-1676, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37793342

RESUMEN

Killing senescent cells to improve health-span holds great promise. However, screening for senescence-regulating genes and molecules is challenging because these cells do not proliferate. In this issue, Colville and Liu et al. develop Death-seq, a positive selection screening tool that overcomes this hurdle to offer broad genetic and pharmacological utility.


Asunto(s)
Apoptosis , Senescencia Celular , Senescencia Celular/genética
8.
Cell Tissue Res ; 394(1): 1-16, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37016180

RESUMEN

Senescence is a widely appreciated tumour suppressive mechanism, which acts as a barrier to cancer development by arresting cell cycle progression in response to harmful stimuli. However, senescent cell accumulation becomes deleterious in aging and contributes to a wide range of age-related pathologies. Furthermore, senescence has beneficial roles and is associated with a growing list of normal physiological processes including wound healing and embryonic development. Therefore, the biological role of senescent cells has become increasingly nuanced and complex. The emergence of sophisticated, next-generation profiling technologies, such as single-cell RNA sequencing, has accelerated our understanding of the heterogeneity of senescence, with distinct final cell states emerging within models as well as between cell types and tissues. In order to explore data sets of increasing size and complexity, the senescence field has begun to employ machine learning (ML) methodologies to probe these intricacies. Most notably, ML has been used to aid the classification of cells as senescent, as well as to characterise the final senescence phenotypes. Here, we provide a background to the principles of ML tasks, as well as some of the most commonly used methodologies from both traditional and deep ML. We focus on the application of these within the context of senescence research, by addressing the utility of ML for the analysis of data from different laboratory technologies (microscopy, transcriptomics, proteomics, methylomics), as well as the potential within senolytic drug discovery. Together, we aim to highlight both the progress and potential for the application of ML within senescence research.


Asunto(s)
Senescencia Celular , Neoplasias , Humanos , Senescencia Celular/genética , Envejecimiento/metabolismo , Neoplasias/genética , Fenotipo , División Celular
9.
Biomedicines ; 10(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36551868

RESUMEN

Melanocytes reside within the basal epidermis of human skin, and function to protect the skin from ultraviolet light through the production of melanin. Prolonged exposure of the skin to UV light can induce irreparable DNA damage and drive cells into senescence, a sustained cell cycle arrest that prevents the propagation of this damage. Senescent cells can also be detrimental and contribute to skin ageing phenotypes through their senescence-associated secretory phenotype. Senescent cells can act in both an autocrine and paracrine manner to produce widespread tissue inflammation and skin ageing. Recently, melanocytes have been identified as the main senescent cell population within the epidermis and have been linked to a variety of skin ageing phenotypes, such as epidermal thinning and the presence of wrinkles. However, the literature surrounding melanocyte senescence is limited and tends to focus on the role of senescence in the prevention of melanoma. Therefore, this review aims to explore the current understanding of the contribution of senescent melanocytes to human skin ageing.

10.
Aging (Albany NY) ; 14(10): 4220-4246, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35580013

RESUMEN

Senescence occurs in response to a number of damaging stimuli to limit oncogenic transformation and cancer development. As no single, universal senescence marker has been discovered, the confident classification of senescence induction requires the parallel assessment of a series of hallmarks. Therefore, there is a growing need for "first-pass" tools of senescence identification to streamline experimental workflows and complement conventional markers. Here, we utilise a high content, multidimensional phenotypic profiling-based approach, to assess the morphological profiles of senescent cells induced via a range of stimuli. In the context of senescence, we refer to these as senescence-associated morphological profiles (SAMPs), as they facilitate distinction between senescent and proliferating cells. The complexity of the profiles generated also allows exploration of the heterogeneity both between models of senescence and within an individual senescence model, providing a level of insight at the single cell level. Furthermore, we also demonstrate that these models are applicable to the assessment of senescence in vivo, which remains a key challenge for the field. Therefore, we believe SAMPs has the potential to serve as a useful addition in the repertoire of senescence researchers, either as a first-pass tool or as part of the established senescence hallmarks.


Asunto(s)
Senescencia Celular , Neoplasias , Biomarcadores , Carcinogénesis , Humanos , Neoplasias/genética , Oncogenes
11.
Front Neurosci ; 15: 747067, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690683

RESUMEN

Human colonic neuromuscular functions decline among the elderly. The aim was to explore the involvement of senescence. A preliminary PCR study looked for age-dependent differences in expression of CDKN1A (encoding the senescence-related p21 protein) and CDKN2A (encoding p16 and p14) in human ascending and descending colon (without mucosa) from 39 (approximately 50: 50 male: female) adult (aged 27-60 years) and elderly donors (70-89 years). Other genes from different aging pathways (e.g., inflammation, oxidative stress, autophagy) and cell-types (e.g., neurons, neuron axonal transport) were also examined. Unlike CDKN1A, CDKN2A (using primers for p16 and p14 but not when using p14-specific primers) was upregulated in both regions of colon. Compared with the number of genes appearing to upregulate in association with temporal age, more genes positively associated with increased CDKN2A expression (respectively, 16 and five of 44 genes studied for ascending and descending colon). Confirmation of increased expression of CDKN2A was sought by immunostaining for p16 in the myenteric plexus of colon from 52 patients, using a semi-automated software protocol. The results showed increased staining not within the glial cells (S100 stained), but in the cytoplasm of myenteric nerve cell bodies (MAP2 stained, with identified nucleus) of ascending, but not descending colon of the elderly, and not in the cell nucleus of either region or age group (5,710 neurons analyzed: n = 12-14 for each group). It was concluded that increased p16 staining within the cytoplasm of myenteric nerve cell bodies of elderly ascending (but not descending) colon, suggests a region-dependent, post-mitotic cellular senescence-like activity, perhaps involved with aging of enteric neurons within the colon.

12.
Immunity ; 54(7): 1494-1510.e7, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34033752

RESUMEN

Aging is associated with dysregulated immune functions. Here, we investigated the impact of age on neutrophil diapedesis. Using confocal intravital microscopy, we found that in aged mice, neutrophils adhered to vascular endothelium in inflamed tissues but exhibited a high frequency of reverse transendothelial migration (rTEM). This retrograde breaching of the endothelium by neutrophils was governed by enhanced production of the chemokine CXCL1 from mast cells that localized at endothelial cell (EC) junctions. Increased EC expression of the atypical chemokine receptor 1 (ACKR1) supported this pro-inflammatory milieu in aged venules. Accumulation of CXCL1 caused desensitization of the chemokine receptor CXCR2 on neutrophils and loss of neutrophil directional motility within EC junctions. Fluorescent tracking revealed that in aged mice, neutrophils undergoing rTEM re-entered the circulation and disseminated to the lungs where they caused vascular leakage. Thus, neutrophils stemming from a local inflammatory site contribute to remote organ damage, with implication to the dysregulated systemic inflammation associated with aging.


Asunto(s)
Envejecimiento/inmunología , Transporte Biológico/inmunología , Inflamación/inmunología , Neutrófilos/inmunología , Animales , Quimiocina CXCL1/inmunología , Células Endoteliales/inmunología , Endotelio Vascular/inmunología , Femenino , Uniones Intercelulares/inmunología , Pulmón/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Interleucina-8B/inmunología , Vénulas/inmunología
13.
J Extracell Vesicles ; 10(4): e12041, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33659050

RESUMEN

A hallmark of senescence is the acquisition of an enhanced secretome comprising inflammatory mediators and tissue remodelling agents - the senescence-associated secretory phenotype (SASP). Through the SASP, senescent cells are hypothesised to contribute to both ageing and pathologies associated with age. Whilst soluble factors have been the most widely investigated components of the SASP, there is growing evidence that small extracellular vesicles (EVs) comprise functionally important constituents. Thus, dissecting the contribution of the soluble SASP from the vesicular component is crucial to elucidating the functional significance of senescent cell derived EVs. Here, we take advantage of a systematic proteomics based approach to determine that soluble SASP factors co-isolate with EVs following differential ultracentrifugation (dUC). We present size-exclusion chromatography (SEC) as a method for separation of the soluble and vesicular components of the senescent secretome and thus EV purification. Furthermore, we demonstrate that SEC EVs isolated from senescent cells contribute to non-cell autonomous paracrine senescence. Therefore, this work emphasises the requirement for methodological rigor due to the propensity of SASP components to co-isolate during dUC and provides a framework for future investigations of the vesicular component of the SASP.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular , Vesículas Extracelulares/metabolismo , Secretoma/metabolismo , Fenotipo Secretor Asociado a la Senescencia , Línea Celular Tumoral , Células Cultivadas , Cromatografía en Gel , Exosomas/química , Exosomas/metabolismo , Vesículas Extracelulares/química , Humanos , Fenotipo , Proteínas/análisis , Proteómica/métodos
14.
Aging Cell ; 20(3): e13318, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33547862

RESUMEN

Senescence, a state of stable growth arrest, plays an important role in ageing and age-related diseases in vivo. Although the INK4/ARF locus is known to be essential for senescence programmes, the key regulators driving p16 and ARF transcription remain largely underexplored. Using siRNA screening for modulators of the p16/pRB and ARF/p53/p21 pathways in deeply senescent human mammary epithelial cells (DS HMECs) and fibroblasts (DS HMFs), we identified EGR2 as a novel regulator of senescence. EGR2 expression is up-regulated during senescence, and its ablation by siRNA in DS HMECs and HMFs transiently reverses the senescent phenotype. We demonstrate that EGR2 activates the ARF and p16 promoters and directly binds to both the ARF and p16 promoters. Loss of EGR2 down-regulates p16 levels and increases the pool of p16- p21- 'reversed' cells in the population. Moreover, EGR2 overexpression is sufficient to induce senescence. Our data suggest that EGR2 is a direct transcriptional activator of the p16/pRB and ARF/p53/p21 pathways in senescence and a novel marker of senescence.


Asunto(s)
Senescencia Celular , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Adolescente , Adulto , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Glándulas Mamarias Humanas/citología , Unión Proteica , ARN Interferente Pequeño/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Adulto Joven
15.
Mech Ageing Dev ; 190: 111261, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32461142

RESUMEN

The recent advent of 'organs in a dish' has revolutionised the research landscape. These 3D culture systems have paved the way for translational, post genomics research by enabling scientists to model diseases in the laboratory, grow patient-derived organoids, and unite this technology with other cutting-edge methodologies such as drug discovery. Fields such as dermatology and neuroscience have revolutionised the development of robust 3D models, which faithfully recapitulate native physiology in vivo to provide important functional and mechanistic insights. These models have underpinned a rapid growth in the number of organs and myriad of human diseases that can be modelled in 3D, which currently includes breast, cerebral cortex, heart, intestine, kidney, liver, lung, neural tube, pancreas, prostate, skin and stomach, as well as patient derived tumours. However, so far, they have not yet been employed extensively in the study of fundamental cellular programmes such as senescence. Thus, tissue engineering and 3D culture offer an exciting opportunity to further understand the bright and dark sides of senescence in a more complex and physiologically relevant environment. Below, we will discuss previous approaches to investigating senescence and ageing using organotypic models, and some potential opportunities for future research.


Asunto(s)
Senescencia Celular/fisiología , Modelos Biológicos , Organoides , Ingeniería de Tejidos/métodos , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Tecnología Biomédica/métodos , Tecnología Biomédica/tendencias , Humanos , Técnicas de Cultivo de Órganos/métodos , Organoides/fisiología , Organoides/fisiopatología
16.
Mech Ageing Dev ; 189: 111263, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32461143

RESUMEN

Senescence is a state of proliferative arrest which has been described as a protective mechanism against the malignant transformation of cells. However, senescent cells have also been demonstrated to accumulate with age and to contribute to a variety of age-related pathologies. These pathological effects have been attributed to the acquisition of an enhanced secretory profile geared towards inflammatory molecules and tissue remodelling agents - known as the senescence-associated secretory phenotype (SASP). Whilst the SASP has long been considered to be comprised predominantly of soluble mediators, growing evidence has recently emerged for the role of extracellular vesicles (EVs) as key players within the secretome of senescent cells. This review is intended to consolidate recent evidence for the roles of senescent cell-derived EVs to both the beneficial (Bright) and detrimental (Dark) effects of the SASP.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular , Vesículas Extracelulares/metabolismo , Humanos
17.
Genome Biol ; 21(1): 91, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32264951

RESUMEN

BACKGROUND: Cellular senescence, a permanent state of replicative arrest in otherwise proliferating cells, is a hallmark of aging and has been linked to aging-related diseases. Many genes play a role in cellular senescence, yet a comprehensive understanding of its pathways is still lacking. RESULTS: We develop CellAge (http://genomics.senescence.info/cells), a manually curated database of 279 human genes driving cellular senescence, and perform various integrative analyses. Genes inducing cellular senescence tend to be overexpressed with age in human tissues and are significantly overrepresented in anti-longevity and tumor-suppressor genes, while genes inhibiting cellular senescence overlap with pro-longevity and oncogenes. Furthermore, cellular senescence genes are strongly conserved in mammals but not in invertebrates. We also build cellular senescence protein-protein interaction and co-expression networks. Clusters in the networks are enriched for cell cycle and immunological processes. Network topological parameters also reveal novel potential cellular senescence regulators. Using siRNAs, we observe that all 26 candidates tested induce at least one marker of senescence with 13 genes (C9orf40, CDC25A, CDCA4, CKAP2, GTF3C4, HAUS4, IMMT, MCM7, MTHFD2, MYBL2, NEK2, NIPA2, and TCEB3) decreasing cell number, activating p16/p21, and undergoing morphological changes that resemble cellular senescence. CONCLUSIONS: Overall, our work provides a benchmark resource for researchers to study cellular senescence, and our systems biology analyses reveal new insights and gene regulators of cellular senescence.


Asunto(s)
Envejecimiento/genética , Senescencia Celular/genética , Bases de Datos Genéticas , Animales , Enfermedad/genética , Evolución Molecular , Expresión Génica , Genes Relacionados con las Neoplasias , Humanos , Longevidad/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Mapeo de Interacción de Proteínas , RNA-Seq , Biología de Sistemas
18.
Cell ; 179(4): 813-827, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675495

RESUMEN

Cellular senescence is a cell state implicated in various physiological processes and a wide spectrum of age-related diseases. Recently, interest in therapeutically targeting senescence to improve healthy aging and age-related disease, otherwise known as senotherapy, has been growing rapidly. Thus, the accurate detection of senescent cells, especially in vivo, is essential. Here, we present a consensus from the International Cell Senescence Association (ICSA), defining and discussing key cellular and molecular features of senescence and offering recommendations on how to use them as biomarkers. We also present a resource tool to facilitate the identification of genes linked with senescence, SeneQuest (available at http://Senequest.net). Lastly, we propose an algorithm to accurately assess and quantify senescence, both in cultured cells and in vivo.


Asunto(s)
Envejecimiento/genética , Biomarcadores , Senescencia Celular/genética , Enfermedades Genéticas Congénitas/genética , Puntos de Control del Ciclo Celular/genética , Cromatina/genética , Regulación de la Expresión Génica/genética , Enfermedades Genéticas Congénitas/terapia , Humanos
19.
Adv Biosyst ; 3(8): e1900011, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-32648701

RESUMEN

Cell migration is a fundamental biological process that is dynamically regulated by complex interactions between the microenvironment and intrinsic gene expression programs. Here, a high-throughput cell migration assay is developed using micropatterned and dynamically adhesive polymer brush substrates, which support highly precise and consistent control over cell-matrix interactions within a 96-well cell culture plate format. This system is combined with automated imaging and quantitation of both cell motility and organization of the F-actin cytoskeleton for high-content analysis of cell migration phenotypes. Using this platform to screen a library of 147 epigenetic inhibitors identifies a set of EZH2-specific compounds that promote cytoskeletal remodeling and accelerates keratinocyte migration through derepression of an epithelial to mesenchymal transition-like gene expression program. Together, these studies establish the high-throughput, micropatterned assay as a powerful tool for discovery of novel therapeutic targets and for dissecting complex gene-environment interactions involved in wound repair.


Asunto(s)
Movimiento Celular/fisiología , Técnicas Citológicas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Línea Celular , Citoesqueleto/genética , Citoesqueleto/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética/genética , Diseño de Equipo , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos
20.
Cell Tissue Res ; 368(2): 325-335, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28190086

RESUMEN

The miR-29 family is involved in fibrosis in multiple organs, including the intestine where miR-29b facilitates TGF-ß-mediated up-regulation of collagen in mucosal fibroblasts from Crohn's disease (CD) patients. Myeloid cell leukemia-1 (MCL-1), a member of the B-cell CLL/Lymphoma 2 (BCL-2) apoptosis family, is involved in liver fibrosis and is targeted by miR-29b via its 3'-UTR in cultured cell lines. We investigate the role of MCL-1 and miR-29b in primary intestinal fibroblasts and tissue from stricturing CD patients. Transfection of CD intestinal fibroblasts with pre-miR-29b resulted in a significant increase in the mRNA expression of MCL-1 isoforms [MCL-1Long (L)/Extra Short (ES) and MCL-1Short (S)], although MCL-1S was expressed at significantly lower levels. Western blotting predominantly detected the anti-apoptotic MCL-1L isoform, and immunofluorescence showed that staining was localised in discrete nuclear foci. Transfection with pre-miR-29b or anti-miR-29b resulted in a significant increase or decrease, respectively, in MCL-1L foci. CD fibroblasts treated with IL-6 and IL-8, inflammatory cytokines upstream of MCL-1, increased the total mass of MCL-1L-positive foci. Furthermore, transfection of intestinal fibroblasts with pre-miR-29b resulted in an increase in mRNA and protein levels of IL-6 and IL-8. Finally, immunohistochemistry showed reduced MCL-1 protein expression in fibrotic CD samples compared to non-stricturing controls. Together, our findings suggest that induction of MCL-1 by IL-6/IL-8 may surmount any direct down-regulation by miR-29b via its 3'-UTR. We propose that an anti-fibrotic miR-29b/IL-6 IL-8/MCL-1L axis may influence intestinal fibrosis in CD. In the future, therapeutic modulation of this pathway might contribute to the management of fibrosis in CD.


Asunto(s)
Enfermedad de Crohn/genética , Enfermedad de Crohn/patología , Interleucina-6/metabolismo , Interleucina-8/metabolismo , MicroARNs/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Regiones no Traducidas 3'/genética , Secuencia de Bases , Sitios de Unión , Fibroblastos/metabolismo , Fibrosis , Humanos , Interleucina-6/genética , Interleucina-8/genética , Intestinos/patología , MicroARNs/genética , Modelos Biológicos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transfección , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA