Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Paleobiology ; 50(2): 308-329, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38846629

RESUMEN

Theropods are obligate bipedal dinosaurs that appeared 230 million years ago and are still extant as birds. Their history is characterized by extreme variations in body mass, with gigantism evolving convergently between many lineages. However, no quantification of hindlimb functional morphology has shown if these body mass increases led to similar specializations between distinct lineages. Here we studied femoral shape variation across 41 species of theropods (n= 68 specimens) using a high-density 3D geometric morphometric approach. We demonstrated that the heaviest theropods evolved wider epiphyses and a more distally located fourth trochanter, as previously demonstrated in early archosaurs, along with an upturned femoral head and a mediodistal crest that extended proximally along the shaft. Phylogenetically informed analyses highlighted that these traits evolved convergently within six major theropod lineages, regardless of their maximum body mass. Conversely, the most gracile femora were distinct from the rest of the dataset, which we interpret as a femoral specialization to "miniaturization" evolving close to Avialae (bird lineage). Our results support a gradual evolution of known "avian" features, such as the fusion between lesser and greater trochanters and a reduction of the epiphyses' offset, independently from body mass variations, which may relate to a more "avian" type of locomotion (more knee-than hip-driven). The distinction between body mass variations and a more "avian" locomotion is represented by a decoupling in the mediodistal crest morphology, whose biomechanical nature should be studied to better understand the importance of its functional role in gigantism, miniaturization and higher parasagittal abilities.

2.
Nat Commun ; 15(1): 2181, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467620

RESUMEN

Animal performance fundamentally influences behaviour, ecology, and evolution. It typically varies monotonously with size. A notable exception is maximum running speed; the fastest animals are of intermediate size. Here we show that this peculiar allometry results from the competition between two musculoskeletal constraints: the kinetic energy capacity, which dominates in small animals, and the work capacity, which reigns supreme in large animals. The ratio of both capacities defines the physiological similarity index Γ, a dimensionless number akin to the Reynolds number in fluid mechanics. The scaling of Γ indicates a transition from a dominance of muscle forces to a dominance of inertial forces as animals grow in size; its magnitude defines conditions of "dynamic similarity" that enable comparison and estimates of locomotor performance across extant and extinct animals; and the physical parameters that define it highlight opportunities for adaptations in musculoskeletal "design" that depart from the eternal null hypothesis of geometric similarity. The physiological similarity index challenges the Froude number as prevailing dynamic similarity condition, reveals that the differential growth of muscle and weight forces central to classic scaling theory is of secondary importance for the majority of terrestrial animals, and suggests avenues for comparative analyses of locomotor systems.


Asunto(s)
Carrera , Animales , Carrera/fisiología , Músculos , Fenómenos Biomecánicos
3.
Anat Rec (Hoboken) ; 307(5): 1764-1825, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37726984

RESUMEN

This paper is the first in a two-part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the forelimb. Understanding forelimb muscular anatomy in extinct synapsids, and how this changed on the line to mammals, can provide important perspective for interpreting skeletal and functional evolution in this lineage, and how the diversity of forelimb functions in extant mammals arose. This study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 73 character-state complexes covering all muscles crossing the shoulder, elbow, and wrist joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. In addition to producing a comprehensive documentation of osteological evidence for muscle attachments in extinct synapsids, this work has clarified homology hypotheses across disparate taxa and helped resolve competing hypotheses of muscular anatomy in extinct species. The evolutionary history of mammalian forelimb musculature was a complex and nonlinear narrative, punctuated by multiple instances of convergence and concentrated phases of anatomical transformation. More broadly, this study highlights the great insight that a fossil-based perspective can provide for understanding the assembly of novel body plans.


Asunto(s)
Evolución Biológica , Fósiles , Animales , Filogenia , Mamíferos/fisiología , Miembro Anterior/anatomía & histología , Músculo Esquelético/anatomía & histología
4.
Anat Rec (Hoboken) ; 307(5): 1826-1896, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37727023

RESUMEN

This paper is the second in a two-part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the hindlimb. Although the hindlimb skeleton did not undergo as marked a transformation on the line to mammals as did the forelimb skeleton, the anatomy of extant tetrapods indicates that major changes to musculature have nonetheless occurred. To better understand these changes, this study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 80 character-state complexes covering all muscles crossing the hip, knee, and ankle joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. The evolutionary history of mammalian hindlimb musculature was complex, nonlinear, and protracted, with several instances of convergence and pulses of anatomical transformation that continued well into the crown group. Numerous traits typically regarded as characteristically "mammalian" have much greater antiquity than previously recognized, and for some traits, most synapsids are probably more reflective of the ancestral amniote condition than are extant saurians. More broadly, this study highlights the utility of the fossil record in interpreting the evolutionary appearance of distinctive anatomies.


Asunto(s)
Evolución Biológica , Fósiles , Animales , Filogenia , Mamíferos/fisiología , Miembro Posterior/anatomía & histología , Músculos , Articulación de la Rodilla/anatomía & histología
5.
Environ Pollut ; 320: 121107, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669716

RESUMEN

Ammonia oxidation to hydroxylamine is catalyzed by the ammonia monooxygenase enzyme and copper (Cu) is a key element for this process. We investigated the effect of soil bioavailable Cu changes induced through the application of Cu-complexing compounds on nitrification rate, ammonia-oxidizing bacteria (AOB) and archaea (AOA) amoA gene abundance, and mineral nitrogen (N) leaching in urine patches using the Manawatu Recent soil. Further, evaluated the combination of organic compound calcium lignosulphonate (LS) with a growth stimulant Gibberellic acid (GA). Treatments were applied in May 2021 as late-autumn treatments: control (no urine), urine-only at 600 kg N ha-1, urine + dicyandiamide (DCD), urine + co-poly-acrylic-maleic acid (PA-MA), urine + LS, urine + split-application of LS (2LS), and urine + combination of GA plus LS (GA + LS). In addition, another four treatments were applied in July 2021 as mid-winter treatments: control, urine-only at 600 kg N ha-1, urine + GA, and urine + GA + LS. Soil bioavailable Cu and mineral N leaching were examined during the experimental period. The AOB/AOA amoA genes were quantified using quantitative polymerase chain reaction. Changes in soil bioavailable Cu across treatments correlated with nitrification rate and AOB amoA abundance in late-autumn while the AOA amoA abundance did not change. The reduction in soil bioavailable Cu induced by the PA-MA and 2LS was linked to significant (P < 0.05) reduction in mineral N leaching of 16 and 30%, respectively, relative to the urine-only. The LS did not induce a significant effect on either bioavailable Cu or mineral N leaching relative to urine-only. The GA + LS reduced mineral N leaching by 10% relative to LS in late-autumn, however, there was no significant effect in mid-winter. This study demonstrated that reducing soil bioavailable Cu can be a potential strategy to reduce N leaching from urine patches.


Asunto(s)
Bacterias , Suelo , Animales , Bovinos , Nitrificación , Amoníaco , Oxidación-Reducción , Microbiología del Suelo , Archaea , Filogenia
6.
J Environ Qual ; 52(1): 49-63, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36413802

RESUMEN

Copper (Cu) is the main co-factor in the functioning of the ammonia monooxygenase (AMO) enzyme, which is responsible for the first step of ammonia oxidation. We report a greenhouse-based pot experiment that examines the response of ammonia-oxidizing bacteria and archaea (AOB and AOA) to different bioavailable Cu concentrations in three pastoral soils (Recent, Pallic, and Pumice soils) planted with ryegrass (Lolium perenne L.). Five treatments were used: control (no urine and Cu), urine only at 300 mg N kg-1 soil (Cu0), urine + 1 mg Cu kg-1 soil (Cu1), urine + 10 mg Cu kg-1 soil (Cu10), and urine + 100 mg Cu kg-1 soil (Cu100). Pots were destructively sampled at Day 0, 1, 7, 15, and 25 after urine application. The AOB/AOA amoA gene abundance was analyzed by real-time quantitative polymerase chain reaction at Days 1 and 15. The AOB amoA gene abundance increased 10.0- and 22.6-fold in the Recent soil and 2.1- and 2.5-fold in the Pallic soil for the Cu10 compared with Cu0 on Days 1 and 15, respectively. In contrast, the Cu100 was associated with a reduction in AOB amoA gene abundance in the Recent and Pallic soils but not in the Pumice soil. This may be due to the influence of soil cation exchange capacity differences on the bioavailable Cu. Bioavailable Cu in the Recent and Pallic soils influenced nitrification and AOB amoA gene abundance, as evidenced by the strong positive correlation between bioavailable Cu, nitrification, and AOB amoA. However, bioavailable Cu did not influence the nitrification and AOA amoA gene abundance increase.


Asunto(s)
Archaea , Suelo , Archaea/genética , Bacterias/genética , Nitrificación , Amoníaco , Cobre , Oxidación-Reducción , Microbiología del Suelo , Filogenia
7.
J Anat ; 242(2): 289-311, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36206401

RESUMEN

In vertebrates, active movement is driven by muscle forces acting on bones, either directly or through tendinous insertions. There has been much debate over how muscle size and force are reflected by the muscular attachment areas (AAs). Here we investigate the relationship between the physiological cross-sectional area (PCSA), a proxy for the force production of the muscle, and the AA of hindlimb muscles in Nile crocodiles and five bird species. The limbs were held in a fixed position whilst blunt dissection was carried out to isolate the individual muscles. AAs were digitised using a point digitiser, before the muscle was removed from the bone. Muscles were then further dissected and fibre architecture was measured, and PCSA calculated. The raw measures, as well as the ratio of PCSA to AA, were studied and compared for intra-observer error as well as intra- and interspecies differences. We found large variations in the ratio between AAs and PCSA both within and across species, but muscle fascicle lengths are conserved within individual species, whether this was Nile crocodiles or tinamou. Whilst a discriminant analysis was able to separate crocodylian and avian muscle data, the ratios for AA to cross-sectional area for all species and most muscles can be represented by a single equation. The remaining muscles have specific equations to represent their scaling, but equations often have a relatively high success at predicting the ratio of muscle AA to PCSA. We then digitised the muscle AAs of Coelophysis bauri, a dinosaur, to estimate the PCSAs and therefore maximal isometric muscle forces. The results are somewhat consistent with other methods for estimating force production, and suggest that, at least for some archosaurian muscles, that it is possible to use muscle AA to estimate muscle sizes. This method is complementary to other methods such as digital volumetric modelling.


Asunto(s)
Extremidad Inferior , Músculo Esquelético , Animales , Músculo Esquelético/fisiología , Vertebrados , Huesos , Miembro Posterior
8.
Sci Total Environ ; 864: 160949, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549131

RESUMEN

The N losses and agronomic performances of newly developed slow-releasing fertilisers (SRFs; Epox5 and Poly5) were tested against conventional N fertilisers, urea and diammonium phosphate (DAP), in a climate-controlled lysimeter system. The dry matter (DM) yield and N losses of SRFs were not significantly different from urea and DAP. However, nitrate leaching and nitrous oxide (N2O) losses were unexpectedly low and therefore, it was inferred that nitrate underwent a chemical transformation. It was observed that a thick fibreglass wick interrupted drainage and created an anaerobic condition in the soil. The subsoil was found to have a high extractable total iron and it was postulated that iron played a role in the observed low level of N losses. An investigation was carried out with a factorial design using sand types and rates of N application as the main factors. Two types of sand; with high and low iron concentration and four levels of N applications; 0 (control), 50, 100 and 200 kg N ha-1 were employed in a leaching column and nitrate and N2O losses were measured. The nitrate leaching was significantly (P < 0.05) affected by sand types wherein a lower nitrate level was recorded for high­iron concentration sand than for low-iron concentration sand at all N application levels. The N2O emission was significantly (P < 0.05) lower for high-iron sand than for low-iron sand for the 200 N treatment, but not significantly different between sand types for other treatments. These observations provide evidence for the involvement of iron in nitrate transformation under anaerobic conditions and it was hypothesised path was dissimilar nitrate reduction (DNR). Further studies are recommended, to identify the underlying mechanism responsible for nitrate reduction with iron-rich sand.

9.
Plants (Basel) ; 11(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36501328

RESUMEN

The effect of newly developed controlled-release fertilisers (CRFs); Epox5 and Ver-1 and two levels of Fe2+ applications (478 and 239 kg-FeSO4 ha−1) on controlling nitrogen (N) losses, were tested on ryegrass, in a climate-controlled lysimeter system. The Epox5 and Ver-1 effectively decreased the total N losses by 37 and 47%, respectively, compared to urea. Nitrous oxide (N2O) emissions by Ver-1 were comparable to urea. However, Epox5 showed significantly higher (p < 0.05) N2O emissions (0.5 kg-N ha−1), compared to other treatments, possibly due to the lock-off nitrogen in Epox5. The application of Fe2+ did not show a significant effect in controlling the N leaching loss and N2O emission. Therefore, a dissimilatory nitrate reduction and chemodenitrification pathways were not pronounced in this study. The total dry matter yield, N accumulation, N use efficiency and soil residual N were not significantly different among any N treatments. Nevertheless, the N accumulation of CRFs was lower in the first month, possibly due to the slow release of urea. The total root biomass was significantly (p < 0.05) lower for Epox5 (35%), compared to urea. The hierarchical clustering of all treatments revealed that Ver-1 outperformed other treatments, followed by Epox5. Further studies are merited to identify the potential of Fe2+ as a controlling agent for N losses.

10.
Proc Biol Sci ; 289(1984): 20220740, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36196539

RESUMEN

Significant evolutionary shifts in locomotor behaviour often involve comparatively subtle anatomical transitions. For dinosaurian and avian evolution, medial overhang of the proximal femur has been central to discussions. However, there is an apparent conflict with regard to the evolutionary origin of the dinosaurian femoral head, with neontological and palaeontological data suggesting seemingly incongruent hypotheses. To reconcile this, we reconstructed the evolutionary history of morphogenesis of the proximal end of the femur from early archosaurs to crown birds. Embryological comparison of living archosaurs (crocodylians and birds) suggests the acquisition of the greater overhang of the femoral head in dinosaurs results from additional growth of the proximal end in the medial-ward direction. On the other hand, the fossil record suggests that this overhang was acquired by torsion of the proximal end, which projected in a more rostral direction ancestrally. We reconcile this apparent conflict by inferring that the medial overhang of the dinosaur femoral head was initially acquired by torsion, which was then superseded by mediad growth. Details of anatomical shifts in fossil forms support this hypothesis, and their biomechanical implications are congruent with the general consensus regarding broader morpho-functional evolution on the avian stem.


Asunto(s)
Dinosaurios , Cabeza Femoral , Animales , Evolución Biológica , Aves , Dinosaurios/anatomía & histología , Fósiles , Morfogénesis , Filogenia
11.
Plants (Basel) ; 11(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36145831

RESUMEN

This lysimeter study investigated the effect of late-autumn application of dicyandiamide (DCD), co-poly acrylic-maleic acid (PA-MA), calcium lignosulphonate (LS), a split-application of calcium lignosulphonate (2LS), and a combination of gibberellic acid (GA) and LS (GA + LS) to reduce N leaching losses during May 2020 to December 2020 in lysimeter field sites in Manawatu (Orthic Pumice soil) and Canterbury (Pallic Orthic Brown soil), New Zealand. In a second application, urine-only, GA only and GA + LS treatments were applied during July 2020 in mid-winter on both sites. Results showed that late-autumn application of DCD, 2LS and GA + LS reduced mineral N leaching by 8%, 16%, and 35% in the Manawatu site and by 34%, 11%, and 35% in the Canterbury site, respectively when compared to urine-only. There was no significant increase in cumulative herbage N uptake and yield between urine-treated lysimeters in both sites. Mid-winter application of GA and GA + LS reduced mineral N leaching by 23% and 20%, respectively in the Manawatu site relative to urine-only treated lysimeters, but no significant reduction was observed in the Canterbury site. Our results demonstrated the potential application of these treatments in different soils under different climate and management conditions.

12.
J Anat ; 241(1): 101-118, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35118654

RESUMEN

The last common ancestor of birds and crocodylians plus all of its descendants (clade Archosauria) dominated terrestrial Mesozoic ecosystems, giving rise to disparate body plans, sizes, and modes of locomotion. As in the fields of vertebrate morphology and paleontology more generally, studies of archosaur skeletal structure have come to depend on tools for acquiring, measuring, and exploring three-dimensional (3-D) digital models. Such models, in turn, form the basis for many analyses of musculoskeletal function. A set of shared conventions for describing 3-D pose (joint or limb configuration) and 3-D kinematics (change in pose through time) is essential for fostering comparison of posture/movement among such varied species, as well as for maximizing communication among scientists. Following researchers in human biomechanics, we propose a standard methodological approach for measuring the relative position and orientation of the major segments of the archosaur pelvis and hindlimb in 3-D. We describe the construction of anatomical and joint coordinate systems using the extant guineafowl and alligator as examples. Our new standards are then applied to three extinct taxa sampled from the wider range of morphological, postural, and kinematic variation that has arisen across >250 million years of archosaur evolution. These proposed conventions, and the founding principles upon which they are based, can also serve as starting points for measuring poses between elements within a hindlimb segment, for establishing coordinate systems in the forelimb and axial skeleton, or for applying our archosaurian system more broadly to different vertebrate clades.


Asunto(s)
Caimanes y Cocodrilos , Evolución Biológica , Caimanes y Cocodrilos/anatomía & histología , Animales , Fenómenos Biomecánicos , Ecosistema , Miembro Posterior/anatomía & histología , Humanos , Extremidad Inferior , Vertebrados
13.
PeerJ ; 9: e12574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34909284

RESUMEN

Skeletal muscle mass, architecture and force-generating capacity are well known to scale with body size in animals, both throughout ontogeny and across species. Investigations of limb muscle scaling in terrestrial amniotes typically focus on individual muscles within select clades, but here this question was examined at the level of the whole limb across amniotes generally. In particular, the present study explored how muscle mass, force-generating capacity (measured by physiological cross-sectional area) and internal architecture (fascicle length) scales in the fore- and hindlimbs of extant mammals, non-avian saurians ('reptiles') and bipeds (birds and humans). Sixty species spanning almost five orders of magnitude in body mass were investigated, comprising previously published architectural data and new data obtained via dissections of the opossum Didelphis virginiana and the tegu lizard Salvator merianae. Phylogenetic generalized least squares was used to determine allometric scaling slopes (exponents) and intercepts, to assess whether patterns previously reported for individual muscles or functional groups were retained at the level of the whole limb, and to test whether mammals, reptiles and bipeds followed different allometric trajectories. In general, patterns of scaling observed in individual muscles were also observed in the whole limb. Reptiles generally have proportionately lower muscle mass and force-generating capacity compared to mammals, especially at larger body size, and bipeds exhibit strong to extreme positive allometry in the distal hindlimb. Remarkably, when muscle mass was accounted for in analyses of muscle force-generating capacity, reptiles, mammals and bipeds almost ubiquitously followed a single common scaling pattern, implying that differences in whole-limb force-generating capacity are principally driven by differences in muscle mass, not internal architecture. In addition to providing a novel perspective on skeletal muscle allometry in animals, the new dataset assembled was used to generate pan-amniote statistical relationships that can be used to predict muscle mass or force-generating capacity in extinct amniotes, helping to inform future reconstructions of musculoskeletal function in the fossil record.

14.
Sci Adv ; 7(39): eabi7348, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34550734

RESUMEN

Locomotion has influenced the ecology, evolution, and extinction of species throughout history, yet studying locomotion in the fossil record is challenging. Computational biomechanics can provide novel insight by mechanistically relating observed anatomy to whole-animal function and behavior. Here, we leverage optimal control methods to generate the first fully predictive, three-dimensional, muscle-driven simulations of locomotion in an extinct terrestrial vertebrate, the bipedal non-avian theropod dinosaur Coelophysis. Unexpectedly, our simulations involved pronounced lateroflexion movements of the tail. Rather than just being a static counterbalance, simulations indicate that the tail played a crucial dynamic role, with lateroflexion acting as a passive, physics-based mechanism for regulating angular momentum and improving locomotor economy, analogous to the swinging arms of humans. We infer this mechanism to have existed in many other bipedal non-avian dinosaurs as well, and our methodology provides new avenues for exploring the functional diversity of dinosaur tails in the future.

15.
PLoS Comput Biol ; 17(4): e1008843, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33793558

RESUMEN

The arrangement and physiology of muscle fibres can strongly influence musculoskeletal function and whole-organismal performance. However, experimental investigation of muscle function during in vivo activity is typically limited to relatively few muscles in a given system. Computational models and simulations of the musculoskeletal system can partly overcome these limitations, by exploring the dynamics of muscles, tendons and other tissues in a robust and quantitative fashion. Here, a high-fidelity, 26-degree-of-freedom musculoskeletal model was developed of the hindlimb of a small ground bird, the elegant-crested tinamou (Eudromia elegans, ~550 g), including all the major muscles of the limb (36 actuators per leg). The model was integrated with biplanar fluoroscopy (XROMM) and forceplate data for walking and running, where dynamic optimization was used to estimate muscle excitations and fibre length changes throughout both gaits. Following this, a series of static simulations over the total range of physiological limb postures were performed, to circumscribe the bounds of possible variation in fibre length. During gait, fibre lengths for all muscles remained between 0.5 to 1.21 times optimal fibre length, but operated mostly on the ascending limb and plateau of the active force-length curve, a result that parallels previous experimental findings for birds, humans and other species. However, the ranges of fibre length varied considerably among individual muscles, especially when considered across the total possible range of joint excursion. Net length change of muscle-tendon units was mostly less than optimal fibre length, sometimes markedly so, suggesting that approaches that use muscle-tendon length change to estimate optimal fibre length in extinct species are likely underestimating this important parameter for many muscles. The results of this study clarify and broaden understanding of muscle function in extant animals, and can help refine approaches used to study extinct species.


Asunto(s)
Simulación por Computador , Extinción Biológica , Miembro Posterior/fisiología , Locomoción , Modelos Biológicos , Fibras Musculares Esqueléticas/fisiología , Paleognatos/fisiología , Algoritmos , Animales , Fenómenos Biomecánicos , Miembro Posterior/anatomía & histología , Tendones/fisiología
16.
J Anat ; 239(2): 424-444, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33754362

RESUMEN

We developed a three-dimensional, computational biomechanical model of a juvenile Nile crocodile (Crocodylus niloticus) pelvis and hindlimb, composed of 47 pelvic limb muscles, to investigate muscle function. We tested whether crocodiles, which are known to use a variety of limb postures during movement, use limb orientations (joint angles) that optimise the moment arms (leverages) or moment-generating capacities of their muscles during different limb postures ranging from a high walk to a sprawling motion. We also describe the three-dimensional (3D) kinematics of the crocodylian hindlimb during terrestrial locomotion across an instrumented walkway and a treadmill captured via X-ray Reconstruction of Moving Morphology (biplanar fluoroscopy; 'XROMM'). We reconstructed the 3D positions and orientations of each of the hindlimb bones and used dissection data for muscle lines of action to reconstruct a focal, subject-specific 3D musculoskeletal model. Motion data for different styles of walking (a high, crouched, bended and two types of sprawling motion) were fed into the 3D model to identify whether any joints adopted near-optimal poses for leverage across each of the behaviours. We found that (1) the hip adductors and knee extensors had their largest leverages during sprawling postures and (2) more erect postures typically involved greater peak moment arms about the hip (flexion-extension), knee (flexion) and metatarsophalangeal (flexion) joints. The results did not fully support the hypothesis that optimal poses are present during different locomotory behaviours because the peak capacities were not always reached around mid-stance phase. Furthermore, we obtained few clear trends for isometric moment-generating capacities. Therefore, perhaps peak muscular leverage in Nile crocodiles is instead reached either in early/late stance or possibly during swing phase or other locomotory behaviours that were not studied here, such as non-terrestrial movement. Alternatively, our findings could reflect a trade-off between having to execute different postures, meaning that hindlimb muscle leverage is not optimised for any singular posture or behaviour. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in extant crocodiles which can form a basis for investigating muscle function in extinct archosaurs.


Asunto(s)
Caimanes y Cocodrilos/fisiología , Miembro Posterior/fisiología , Locomoción , Modelos Biológicos , Músculo Esquelético/fisiología , Caimanes y Cocodrilos/anatomía & histología , Animales , Femenino , Rango del Movimiento Articular
17.
J Anat ; 238(6): 1425-1441, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33533053

RESUMEN

Joint mobility is a key factor in determining the functional capacity of tetrapod limbs, and is important in palaeobiological reconstructions of extinct animals. Recent advances have been made in quantifying osteological joint mobility using virtual computational methods; however, these approaches generally focus on the proximal limb joints and have seldom been applied to fossil mammals. Palorchestes azael is an enigmatic, extinct ~1000 kg marsupial with no close living relatives, whose functional ecology within Australian Pleistocene environments is poorly understood. Most intriguing is its flattened elbow morphology, which has long been assumed to indicate very low mobility at this important joint. Here, we tested elbow mobility via virtual range of motion (ROM) mapping and helical axis analysis, to quantitatively explore the limits of Palorchestes' elbow movement and compare this with their living and extinct relatives, as well as extant mammals that may represent functional analogues. We find that Palorchestes had the lowest elbow mobility among mammals sampled, even when afforded joint translations in addition to rotational degrees of freedom. This indicates that Palorchestes was limited to crouched forelimb postures, something highly unusual for mammals of this size. Coupled flexion and abduction created a skewed primary axis of movement at the elbow, suggesting an abducted forelimb posture and humeral rotation gait that is not found among marsupials and unlike that seen in any large mammals alive today. This work introduces new quantitative methods and demonstrates the utility of comparative ROM mapping approaches, highlighting that Palorchestes' forelimb function was unlike its contemporaneous relatives and appears to lack clear functional analogues among living mammals.


Asunto(s)
Articulación del Codo/fisiología , Miembro Anterior/fisiología , Húmero/fisiología , Postura/fisiología , Rango del Movimiento Articular/fisiología , Animales , Australia , Fenómenos Biomecánicos/fisiología , Articulación del Codo/anatomía & histología , Miembro Anterior/anatomía & histología , Fósiles , Húmero/anatomía & histología , Marsupiales , Movimiento
18.
Environ Pollut ; 268(Pt A): 115839, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33120331

RESUMEN

The two forage species used in New Zealand pastoral agricultural systems, chicory (Cichorium intybus) and plantain (Plantago lanceolata) show differential ability to absorb and translocate cadmium (Cd) from roots to shoots. Chicory can accumulate Cd from even low Cd soils to levels that might exceed regulatory guidelines for Cd in fodder crops and food. Chicory and plantain were grown in soil-filled rhizocolumns under increasing Cd levels (0 (Control), 0.4, 0.8 and 1.6 mg Cd/kg soil) for 60 days and showed variable secretion of oxalic, fumaric, malic and acetic acids as a function of Cd treatment. Plant roots secrete such Low Molecular Weight Organic Acids into the rhizosphere soil, which can influence Cd uptake. Chicory showed significantly (P < 0.05) lower secretion of fumaric acid, and higher secretion of acetic acid than plantain at all Cd treatments. We propose that the significant secretion differences between the two species can explain the significantly (P < 0.05) higher shoot Cd concentration in chicory for all Cd treatments. Understanding the mechanism for increased uptake in chicory may lead to breeding or genetic modification which yield low Cd uptake cultivars needed to mitigate the risk of Cd accumulation in pastoral agricultural food chains from this increasingly important fodder crop.


Asunto(s)
Cadmio , Contaminantes del Suelo , Secreciones Corporales/química , Cadmio/análisis , Nueva Zelanda , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis
19.
R Soc Open Sci ; 7(6): 200191, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32742688

RESUMEN

The locomotion strategies of fossil invertebrates are typically interpreted on the basis of morphological descriptions. However, it has been shown that homologous structures with disparate morphologies in extant invertebrates do not necessarily correlate with differences in their locomotory capability. Here, we present a new methodology for analysing locomotion in fossil invertebrates with a rigid skeleton through an investigation of a cornute stylophoran, an extinct fossil echinoderm with enigmatic morphology that has made its mode of locomotion difficult to reconstruct. We determined the range of motion of a stylophoran arm based on digitized three-dimensional morphology of an early Ordovician form, Phyllocystis crassimarginata. Our analysis showed that efficient arm-forward epifaunal locomotion based on dorsoventral movements, as previously hypothesized for cornute stylophorans, was not possible for this taxon; locomotion driven primarily by lateral movement of the proximal aulacophore was more likely. Three-dimensional digital modelling provides an objective and rigorous methodology for illuminating the movement capabilities and locomotion strategies of fossil invertebrates.

20.
J Crit Care Med (Targu Mures) ; 6(1): 65-70, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32104733

RESUMEN

INTRODUCTION: Community-acquired Escherichia coli ventriculitis is considered a rare condition. Central nervous system (CNS) infection due to gram-negative bacilli is usually associated with previous neurosurgical interventions. The recent publication of cases of Escherichia coli meningitis and ventriculitis suggests its prevalence may be underestimated by the literature. CASE PRESENTATION: A case of community-acquired Escherichia coli CNS infection on a 58 year old patient presenting with altered consciousness but without neck stiffness, nor significant past medical history is reported. Imaging and lumbar puncture findings suggested a complex case of meningitis with associated ventriculitis and vasculitis. Escherichia coli was later identified in cultures. Subsequent multi-organ support in Intensive Care was required. The patient was treated with a prolonged course of intravenous antimicrobials guided by microbiology, resulting in some neurological recovery. The main challenges encountered in the management of the patient were the lack of clear recommendations on the duration of treatment and the potential development of multi-resistant organisms. CONCLUSION: Bacterial central nervous system infections can have an atypical presentation, and an increasing number of cases of community-acquired ventriculitis have been reported. Early consideration should be given to use magnetic resonance imaging to help guide treatment. A long course of antibiotics is often required for these patients; however, the optimal duration for antimicrobial treatment is not well defined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA