Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Nat Commun ; 15(1): 2458, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38503736

Multiple myeloma (MM) is an osteolytic malignancy that is incurable due to the emergence of treatment resistant disease. Defining how, when and where myeloma cell intrinsic and extrinsic bone microenvironmental mechanisms cause relapse is challenging with current biological approaches. Here, we report a biology-driven spatiotemporal hybrid agent-based model of the MM-bone microenvironment. Results indicate MM intrinsic mechanisms drive the evolution of treatment resistant disease but that the protective effects of bone microenvironment mediated drug resistance (EMDR) significantly enhances the probability and heterogeneity of resistant clones arising under treatment. Further, the model predicts that targeting of EMDR deepens therapy response by eliminating sensitive clones proximal to stroma and bone, a finding supported by in vivo studies. Altogether, our model allows for the study of MM clonal evolution over time in the bone microenvironment and will be beneficial for optimizing treatment efficacy so as to significantly delay disease relapse.


Multiple Myeloma , Humans , Bone and Bones/pathology , Chronic Disease , Drug Resistance , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neoplasm Recurrence, Local/genetics , Tumor Microenvironment
2.
Haematologica ; 2023 Nov 16.
Article En | MEDLINE | ID: mdl-37981834

Multiple myeloma (MM) is a malignancy of plasma cells whose antibody secretion creates proteotoxic stress relieved by the N-end rule pathway, a proteolytic system that degrades Narginylated proteins in the proteasome. When the proteasome is inhibited, protein cargo is alternatively targeted for autophagic degradation by binding to the ZZ-domain of p62/sequestosome-1. Here, we demonstrate that XRK3F2, a selective ligand for the ZZ-domain, dramatically improved two major responses to the proteasome inhibitor bortezomib by increasing: 1) killing of human MM cells by stimulating both bortezomib mediated apoptosis and necroptosis, a process regulated by p62; and 2) preservation of bone mass by stimulating osteoblasts differentiation and inhibiting osteoclastic bone destruction. Co-administration of bortezomib and XRK3F2 inhibited both branches of the bimodal N-end rule pathway exhibited synergistic anti-MM effects on MM cell lines and CD138+ cells from MM patients, and prevented stromal-mediated MM cell survival. In mice with established human MM, coadministration of bortezomib and XRK3F2 decreased tumor burden and prevented the progression of MM-induced osteolytic disease by inducing new bone formation more effectively than either single agent alone. The results suggest that p62-ZZ ligands enhance the anti-MM efficacy of proteasome inhibitors and can reduce MM morbidity and mortality by improving bone health.

3.
Sci Adv ; 9(18): eadf0108, 2023 05 03.
Article En | MEDLINE | ID: mdl-37134157

Immune checkpoint blockade has been largely unsuccessful for the treatment of bone metastatic castrate-resistant prostate cancer (mCRPC). Here, we report a combinatorial strategy to treat mCRPC using γδ-enriched chimeric antigen receptor (CAR) T cells and zoledronate (ZOL). In a preclinical murine model of bone mCRPC, γδ CAR-T cells targeting prostate stem cell antigen (PSCA) induced a rapid and significant regression of established tumors, combined with increased survival and reduced cancer-associated bone disease. Pretreatment with ZOL, a U.S. Food and Drug Administration-approved bisphosphonate prescribed to mitigate pathological fracture in mCRPC patients, resulted in CAR-independent activation of γδ CAR-T cells, increased cytokine secretion, and enhanced antitumor efficacy. These data show that the activity of the endogenous Vγ9Vδ2 T cell receptor is preserved in CAR-T cells, allowing for dual-receptor recognition of tumor cells. Collectively, our findings support the use of γδ CAR-T cell therapy for mCRPC treatment.


Prostatic Neoplasms, Castration-Resistant , Receptors, Chimeric Antigen , United States , Male , Humans , Animals , Mice , Prostatic Neoplasms, Castration-Resistant/therapy , Zoledronic Acid/pharmacology , Receptors, Antigen, T-Cell , Cell- and Tissue-Based Therapy
4.
Cancers (Basel) ; 14(3)2022 Feb 02.
Article En | MEDLINE | ID: mdl-35159039

Multiple myeloma (MM) remains incurable for most patients due to the emergence of drug resistant clones. Here we report a p53-independent mechanism responsible for Growth Factor Independence-1 (GFI1) support of MM cell survival by its modulation of sphingolipid metabolism to increase the sphingosine-1-phosphate (S1P) level regardless of the p53 status. We found that expression of enzymes that control S1P biosynthesis, SphK1, dephosphorylation, and SGPP1 were differentially correlated with GFI1 levels in MM cells. We detected GFI1 occupancy on the SGGP1 gene in MM cells in a predicted enhancer region at the 5' end of intron 1, which correlated with decreased SGGP1 expression and increased S1P levels in GFI1 overexpressing cells, regardless of their p53 status. The high S1P:Ceramide intracellular ratio in MM cells protected c-Myc protein stability in a PP2A-dependent manner. The decreased MM viability by SphK1 inhibition was dependent on the induction of autophagy in both p53WT and p53mut MM. An autophagic blockade prevented GFI1 support for viability only in p53mut MM, demonstrating that GFI1 increases MM cell survival via both p53WT inhibition and upregulation of S1P independently. Therefore, GFI1 may be a key therapeutic target for all types of MM that may significantly benefit patients that are highly resistant to current therapies.

5.
Biochem Pharmacol ; 195: 114869, 2022 01.
Article En | MEDLINE | ID: mdl-34896056

NFκB plays a key role in inflammation and skeletal disorders. Previously, we reported that pharmacological inhibition of NFκB at the level of TRAF6 suppressed RANKL, CD40L and IL1ß-induced osteoclastogenesis and attenuated cancer-induced bone disease. TNFα is also known to regulate TRAF6/NFκB signalling, however the anti-inflammatory and osteoprotective effects associated with inhibition of the TNFα/TRAF6/NFκB axis have not been investigated. Here, we show that in vitro and ex vivo exposure to the verified small-molecule inhibitor of TRAF6, 6877002 prevented TNFα-induced NFκB activation, osteoclastogenesis and calvarial osteolysis, but it had no effects on TNFα-induced apoptosis or growth inhibition in osteoblasts. Additionally, 6877002 disrupted T-cells support for osteoclast formation and synoviocyte motility, without affecting the viability of osteoblasts in the presence of T-cells derived factors. Using the collagen-induced arthritis model, we show that oral and intraperitoneal administration of 6877002 in mice reduced joint inflammation and arthritis score. Unexpectedly, no difference in trabecular and cortical bone parameters were detected between vehicle and 6877002 treated mice, indicating lack of osteoprotection by 6877002 in the arthritis model described. Using two independent rodent models of osteolysis, we confirmed that 6877002 had no effect on trabecular and cortical bone loss in both osteoporotic rats or RANKL- treated mice. In contrast, the classic anti-osteolytic alendronate offered complete osteoprotection in RANKL- treated mice. In conclusion, TRAF6 inhibitors may be of value in the management of the inflammatory component of bone disorders, but may not offer protection against local or systemic bone loss, unless combined with anti-resorptive therapy such as bisphosphonates.


Anti-Inflammatory Agents/pharmacology , CD40 Antigens/antagonists & inhibitors , Osteolysis/prevention & control , TNF Receptor-Associated Factor 6/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/chemistry , Arthritis, Experimental/metabolism , Arthritis, Experimental/prevention & control , CD40 Antigens/metabolism , Cell Line, Tumor , Humans , Jurkat Cells , Male , Mice , Mice, Inbred C3H , Mice, Inbred DBA , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoclasts/cytology , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteogenesis/drug effects , Osteolysis/metabolism , RAW 264.7 Cells , Rodentia/metabolism , TNF Receptor-Associated Factor 6/metabolism , Tumor Necrosis Factor-alpha/pharmacology
6.
Cancer Lett ; 488: 27-39, 2020 09 28.
Article En | MEDLINE | ID: mdl-32474152

Tumour necrosis factor receptor-associated factor 6 (TRAF6) has been implicated in breast cancer and osteoclastic bone destruction. Here, we report that 6877002, a verified small-molecule inhibitor of TRAF6, reduced metastasis, osteolysis and osteoclastogenesis in models of osteotropic human and mouse breast cancer. First, we observed that TRAF6 is highly expressed in osteotropic breast cancer cells and its level of expression was higher in patients with bone metastasis. Pre-exposure of osteoclasts and osteoblasts to non-cytotoxic concentrations of 6877002 inhibited cytokine-induced NFκB activation and osteoclastogenesis, and reduced the ability of osteotropic human MDA-MB-231 and mouse 4T1 breast cancer cells to support bone cell activity. 6877002 inhibited human MDA-MB-231-induced osteolysis in the mouse calvaria organ system, and reduced soft tissue and bone metastases in immuno-competent mice following intra-cardiac injection of mouse 4T1-Luc2 cells. Of clinical relevance, combined administration of 6877002 with Docetaxel reduced metastasis and inhibited osteolytic bone damage in mice bearing 4T1-Luc2 cells. Thus, TRAF6 inhibitors such as 6877002 - alone or in combination with conventional chemotherapy - show promise for the treatment of metastatic breast cancer.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bone Neoplasms/secondary , Breast Neoplasms/pathology , Docetaxel/pharmacology , TNF Receptor-Associated Factor 6/antagonists & inhibitors , Animals , Cell Line, Tumor , Female , Humans , Mice , Osteolysis/pathology
7.
EBioMedicine ; 44: 452-466, 2019 Jun.
Article En | MEDLINE | ID: mdl-31151929

BACKGROUND: Cancer-associated bone disease is a serious complication in bone sarcomas and metastatic carcinomas of breast and prostate origin. Monoacylglycerol lipase (MAGL) is an enzyme of the endocannabinoid system, and is responsible for the degradation of the most abundant endocannabinoid in bone, 2-arachidonoyl glycerol (2AG). METHODS: The effects of the verified MAGL inhibitor on bone remodelling were assessed in healthy mice and in mouse models of bone disease caused by prostate and breast cancers and osteosarcoma. FINDINGS: JZL184 reduced osteolytic bone metastasis in mouse models of breast and prostate cancers, and inhibited skeletal tumour growth, metastasis and the formation of ectopic bone in models of osteosarcoma. Additionally, JZL184 suppressed cachexia and prolonged survival in mice injected with metastatic osteosarcoma and osteotropic cancer cells. Functional and histological analysis revealed that the osteoprotective action of JZL184 in cancer models is predominately due to inhibition of tumour growth and metastasis. In the absence of cancer, however, exposure to JZL184 exerts a paradoxical reduction of bone volume via an effect that is mediated by both Cnr1 and Cnr2 cannabinoid receptors. INTERPRETATION: MAGL inhibitors such as JZL184, or its novel analogues, may be of value in the treatment of bone disease caused by primary bone cancer and bone metastasis, however, activation of the skeletal endocannabinoid system may limit their usefulness as osteoprotective agents.


Benzodioxoles/pharmacology , Bone Remodeling/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , Enzyme Inhibitors/pharmacology , Monoacylglycerol Lipases/antagonists & inhibitors , Piperidines/pharmacology , Animals , Bone Neoplasms/diagnosis , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Bone Resorption/diagnostic imaging , Bone Resorption/drug therapy , Bone Resorption/metabolism , Bone Resorption/pathology , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Cell Communication/drug effects , Disease Models, Animal , Female , Heterografts , Humans , Mice , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteolysis/drug therapy , Osteolysis/etiology , Osteolysis/metabolism , Osteolysis/pathology , Receptors, Cannabinoid/metabolism
8.
Calcif Tissue Int ; 105(2): 193-204, 2019 08.
Article En | MEDLINE | ID: mdl-30929064

NFκB is implicated in cancer and bone remodelling, and we have recently reported that the verified NFκB inhibitor Parthenolide (PTN) reduced osteolysis and skeletal tumour growth in models of metastatic breast cancer. Here, we took advantage of in vitro and ex vivo bone cell and organ cultures to study the effects of PTN on the ability of prostate cancer cells and their derived factors to regulate bone cell activity and osteolysis. PTN inhibited the in vitro growth of a panel of human, mouse and rat prostate cancer cells in a concentration-dependent manner with a varying degree of potency. In prostate cancer cell-osteoclast co-cultures, the rat Mat-Ly-Lu, but not human PC3 or mouse RM1-BT, enhanced RANKL stimulated osteoclast formation and PTN reduced these effects without affecting prostate cancer cell viability. In the absence of cancer cells, PTN reduced the support of Mat-Ly-Lu conditioned medium for the adhesion and spreading of osteoclast precursors, and survival of mature osteoclasts. Pre-exposure of osteoblasts to PTN prior to the addition of conditioned medium from Mat-Ly-Lu cells suppressed their ability to support the formation of osteoclasts by inhibition of RANKL/OPG ratio. PTN enhanced the ability of Mat-Ly-Lu derived factors to increase calvarial osteoblast differentiation and growth. Ex vivo, PTN enhanced bone volume in calvaria organ-Mat-Ly-Lu cell co-culture, without affecting Mat-Ly-Lu viability or apoptosis. Mechanistic studies in osteoclasts and osteoblasts confirmed that PTN inhibit NFκB activation related to derived factors from Mat-Ly-Lu cells. Collectively, these findings suggest that pharmacological inhibition of the skeletal NFκB signalling pathway reduces prostate cancer related osteolysis, but further studies in the therapeutic implications of NFκB inhibition in cells of the osteoblastic lineage are needed.


NF-kappa B p50 Subunit/antagonists & inhibitors , Osteogenesis/drug effects , Prostatic Neoplasms/drug therapy , Animals , Apoptosis , Cell Adhesion , Cell Line, Tumor , Cell Survival , Coculture Techniques , DNA Fragmentation , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasm Metastasis , Organ Culture Techniques , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoclasts/cytology , Osteoclasts/drug effects , Prostatic Neoplasms/pathology , Rats , Sesquiterpenes/pharmacology , Signal Transduction , X-Ray Microtomography
9.
Cancer Lett ; 450: 76-87, 2019 05 28.
Article En | MEDLINE | ID: mdl-30790681

IκB kinase subunit epsilon (IKKε), a key component of NFκB and interferon signalling, has been identified as a breast cancer oncogene. Here we report that the IKKε/TBK1 axis plays a role in the initiation and progression of breast cancer osteolytic metastasis. Cancer-specific knockdown of IKKε in the human MDA-MB-231-BT cells and treatment with the verified IKKε/TBK1 inhibitor Amlexanox reduced skeletal tumour growth and osteolysis in mice. In addition, combined administration of Amlexanox with Docetaxel reduced mammary tumour growth of syngeneic 4T1 cells, inhibited metastases and improved survival in mice after removal of the primary tumour. Functional and mechanistic studies in breast cancer cells, osteoclasts and osteoblasts revealed that IKKε inhibition reduces the ability of breast cancer cells to grow, move and enhance osteoclastogenesis by engaging both IRF and NFκB signalling pathways. Thus, therapeutic targeting of the IKKε/TBK1 axis may be of value in the treatment of advanced triple negative breast cancer.


Aminopyridines/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Docetaxel/pharmacology , I-kappa B Kinase/antagonists & inhibitors , Mammary Neoplasms, Experimental/drug therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Aminopyridines/administration & dosage , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Docetaxel/administration & dosage , Drug Synergism , Female , Humans , I-kappa B Kinase/metabolism , MCF-7 Cells , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , RAW 264.7 Cells
10.
Methods Mol Biol ; 1914: 71-98, 2019.
Article En | MEDLINE | ID: mdl-30729461

Co-culture assays are used to study the mutual interaction between cells in vitro. This chapter describes 2D and 3D co-culture systems used to study cell-cell signaling crosstalk between cancer cells and bone marrow adipocytes, osteoblasts, osteoclasts, and osteocytes. The chapter provides a step-by-step guide to the most commonly used cell culture techniques, functional assays, and gene expression.


Bone Marrow Cells/physiology , Cell Communication/physiology , Coculture Techniques/methods , Adipocytes/physiology , Animals , Bombyx , Cell Differentiation/physiology , Cell Line, Tumor , Coculture Techniques/instrumentation , Humans , Mice , Osteoclasts/physiology , Osteocytes/physiology , Primary Cell Culture/instrumentation , Primary Cell Culture/methods , Stromal Cells/physiology , Tissue Engineering/methods , Tissue Scaffolds
11.
Sci Rep ; 8(1): 6877, 2018 05 02.
Article En | MEDLINE | ID: mdl-29720701

Semaphorin 3A (Sema3A), a secreted member of the Semaphorin family, increases osteoblast differentiation, stimulates bone formation and enhances fracture healing. Here, we report a previously unknown role of Sema3A in the regulation of ectopic bone formation and osteolysis related to osteosarcoma. Human recombinant (exogenous) Sema3A promoted the expression of osteoblastic phenotype in a panel of human osteosarcoma cell lines and inhibited the ability of these cells to migrate and enhance osteoclastogenesis in vitro. In vivo, administration of exogenous Sema3A in mice after paratibial inoculation of KHOS cells increased bone volume in non-inoculated and tumour-bearing legs. In contrast, Sema3A overexpression reduced the ability of KHOS cells to cause ectopic bone formation in mice and to increase bone nodule formation by engaging DKK1/ß-catenin signalling. Thus, Sema3A is of potential therapeutic efficacy in osteosarcoma. However, inhibition of bone formation associated with continuous exposure to Sema3A may limit its long-term usefulness as therapeutic agent.


Osteogenesis , Osteosarcoma/metabolism , Semaphorin-3A/metabolism , Animals , Cell Line, Tumor , Cell Movement , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/physiology , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/physiology , Osteosarcoma/pathology , RAW 264.7 Cells , Semaphorin-3A/genetics , Semaphorin-3A/pharmacology , Signal Transduction , beta Catenin/metabolism
12.
Oncotarget ; 9(22): 16134-16148, 2018 Mar 23.
Article En | MEDLINE | ID: mdl-29662632

NFκB is implicated in breast cancer bone metastasis and skeletal remodelling. However, the role of IKKß, a key component of the canonical NFκB pathway, in the regulation of breast cancer osteolytic metastasis has not been investigated. Here, we describe the cancer-specific contribution of IKKß to bone metastasis, skeletal tumour growth and osteolysis associated with breast cancer. IKKß is highly expressed in invasive breast tumours and its level of expression was higher in patients with bone metastasis. IKKß overexpression in parental MDA-MD-231 breast cancer cells, promoted mammary tumour growth but failed to convey osteolytic potential to these cells in mice. In contrast, IKKß overexpression in osteotropic sub-clones of MDA-MB-231 cells with differing osteolytic phenotypes increased incidence of bone metastasis, exacerbated osteolysis and enhanced skeletal tumour growth, whereas its knockdown was inhibitory. Functional and mechanistic studies revealed that IKKß enhanced the ability of osteotropic MDA-MB-231 cells to migrate, increase osteoclastogenesis, and to inhibit osteoblast differentiation via a mechanism mediated, at least in part, by cytoplasmic sequestering of FoxO3a and VEGFA production. Thus, tumour-selective manipulation of IKKß and its interaction with FoxO3a may represent a novel strategy to reduce the development of secondary breast cancer in the skeleton.

13.
Calcif Tissue Int ; 103(2): 206-216, 2018 08.
Article En | MEDLINE | ID: mdl-29455416

IKKß has previously been implicated in breast cancer bone metastasis and bone remodelling. However, the contribution of IKKß expressed by bone cells of the tumour microenvironment to breast cancer-induced osteolysis has yet to be investigated. Here, we studied the effects of the verified selective IKKß inhibitors IKKßIII or IKKßV on osteoclast formation and osteoblast differentiation in vitro and in vivo, human and mouse breast cancer cells' support for osteoclast formation and signalling in vitro and osteolysis ex vivo and in immunocompetent mice after supracalvarial injection of human MDA-MB-231 conditioned medium or intra-cardiac injection of syngeneic 4T1 breast cancer cells. Pre-treatment with IKKßIII or IKKßV prior to exposure to tumour-derived factors from human and mouse breast cancer cell lines protected against breast cancer-induced osteolysis in two independent immunocompetent mouse models of osteolysis and the ex vivo calvarial bone organ system. Detailed functional and mechanistic studies showed that direct inhibition of IKKß kinase activity in osteoblasts and osteoclasts was associated with significant reduction of osteoclast formation, enhanced osteoclast apoptosis and reduced the ability of osteoblasts to support osteoclastogenesis in vitro. When combined with previous findings that suggest NFκB inhibition reduces breast cancer tumorigenesis and metastasis our present findings have an important clinical implication on raising the possibility that IKKß inhibitors, as bone anabolics, osteoclast inhibitors as well as anti-metastatic agents, may have advantages over anti-osteoclasts agents in the treatment of both skeletal and non-skeletal complications associated with metastatic breast cancer.


Breast Neoplasms/metabolism , I-kappa B Kinase/antagonists & inhibitors , Mammary Neoplasms, Animal/metabolism , Animals , Apoptosis/drug effects , Bone Neoplasms/secondary , Bone Remodeling , Caspases/metabolism , Cell Differentiation , Cell Line, Tumor , Culture Media, Conditioned , Female , Humans , I-kappa B Kinase/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasm Metastasis , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteogenesis/drug effects , Osteolysis , Signal Transduction , X-Ray Microtomography
14.
Sci Rep ; 8(1): 39, 2018 01 08.
Article En | MEDLINE | ID: mdl-29311633

NFκB plays an important role in inflammation and bone remodelling. Tumour necrosis factor receptor associated factor 2 (TRAF2), a key component of NFκB signalling, has been identified as an oncogene, but its role in the regulation of breast cancer osteolytic metastasis remains unknown. Here, we report that stable overexpression of TRAF2 in parental and osteotropic sub-clones of human MDA-MB-231 (MDA-231) breast cancer cells increased cell growth and motility in vitro, whereas TRAF2 knockdown was inhibitory. In vivo, TRAF2 overexpression in the parental MDA-231-P cells enhanced tumour growth after orthotopic injection into the mammary fat pad of mice but failed to promote the metastasis of these cells to bone. In contrast, overexpression of TRAF2 in osteotropic MDA-231-BT cells increased skeletal tumour growth, enhanced osteoclast formation and worsened osteolytic bone loss after intra-tibial injection in mice. Mechanistic and functional studies in osteotropic MDA-231-BT and osteoclasts revealed that upregulation of TRAF2 increased the ability of osteotropic MDA-231-BT cells to migrate and to enhance osteoclastogenesis by a mechanism dependent, at least in part, on NFκB activation. Thus, the TRAF2/NFκB axis is implicated in the regulation of skeletal tumour burden and osteolysis associated with advanced breast cancer.


Bone Neoplasms/pathology , Bone Neoplasms/secondary , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Osteolysis/pathology , TNF Receptor-Associated Factor 2/genetics , Animals , Cell Communication , Cell Culture Techniques , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Humans , I-kappa B Kinase/metabolism , Mice , Osteoblasts/metabolism , Osteoclasts/metabolism , TNF Receptor-Associated Factor 2/metabolism , Xenograft Model Antitumor Assays
15.
Cancer Lett ; 410: 180-190, 2017 12 01.
Article En | MEDLINE | ID: mdl-28965856

The NFκB signaling pathway is implicated in breast cancer and bone metastasis. However, the bone-autonomous contribution of NFκB to breast cancer-induced osteolysis is poorly understood. Here, we report that pretreatment of osteoblasts with the sesquiterpene lactone Parthenolide (PTN), a verified NFκB inhibitor, prior to exposure to conditioned medium from human and mouse breast cancer cell lines enhanced osteoblast differentiation and reduced osteoblast ability to stimulate osteoclastogenesis. PTN prevented breast cancer-induced osteoclast formation and reduced the ability of breast cancer cells to prolong osteoclast survival and to inhibit osteoclast apoptosis. In vivo, administration of PTN in immuno-competent mice reduced osteolytic bone loss and skeletal tumour growth following injection of the syngeneic 4T1-BT1 cells and reduced local osteolysis caused by conditioned medium from human and mouse osteotropic breast cancer cell lines. Mechanistic studies revealed that NFκB inhibition by PTN in osteoblasts and osteoclasts was accompanied by a significant increase in ß-catenin activation and expression. Collectively, these results raise the possibility that combined targeting of NFκB and ß-catenin signalling in the tumour microenvironment may be of value in the treatment of breast cancer related osteolysis.


Bone Neoplasms/drug therapy , Breast Neoplasms/metabolism , NF-kappa B/antagonists & inhibitors , Osteoblasts/drug effects , Osteoclasts/drug effects , Osteolysis/drug therapy , Sesquiterpenes/pharmacology , beta Catenin/metabolism , Animals , Apoptosis/drug effects , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Breast Neoplasms/pathology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , Humans , MCF-7 Cells , Mice, Inbred BALB C , Mice, Inbred C57BL , NF-kappa B/metabolism , Osteoblasts/metabolism , Osteoblasts/pathology , Osteoclasts/metabolism , Osteoclasts/pathology , Osteogenesis/drug effects , Osteolysis/metabolism , Osteolysis/pathology , Signal Transduction , Time Factors
...