Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(22)2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37998360

RESUMEN

The Super-Conserved Receptors Expressed in the Brain (SREBs) form a subfamily of orphan G protein-coupled receptors, highly conserved in evolution and characterized by a predominant expression in the brain. The signaling pathways activated by these receptors (if any) are presently unclear. Given the strong conservation of their intracellular loops, we used a BioID2 proximity-labeling assay to identify protein partners of SREBs that would interact with these conserved domains. Using streptavidin pull-down followed by mass spectrometry analysis, we identified the amino acid transporter SLC3A2, the AKAP protein LRBA, and the 4.1 protein EPB41L2 as potential interactors of these GPCRs. Using co-immunoprecipitation experiments, we confirmed the physical association of these proteins with the receptors. We then studied the functional relevance of the interaction between EPB41L2 and SREB1. Immunofluorescence microscopy revealed that SREB1 and EPB41L2 co-localize at the plasma membrane and that SREB1 is enriched in the ß-catenin-positive cell membranes. siRNA knockdown experiments revealed that EPB41L2 promotes the localization of SREB1 at the plasma membrane and increases the solubilization of SREB1 when using detergents, suggesting a modification of its membrane microenvironment. Altogether, these data suggest that EPB41L2 could regulate the subcellular compartmentalization of SREBs and, as proposed for other GPCRs, could affect their stability or activation.


Asunto(s)
Proteínas Portadoras , Proteínas del Citoesqueleto , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo
2.
Dev Dyn ; 252(3): 400-414, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36285351

RESUMEN

BACKGROUND: Two decades ago, the fish-specific monoclonal antibody 4C4 was found to be highly reactive to zebrafish microglia, the macrophages of the central nervous system. This has resulted in 4C4 being widely used, in combination with available fluorescent transgenic reporters to identify and isolate microglia. However, the target protein of 4C4 remains unidentified, which represents a major caveat. In addition, whether the 4C4 expression pattern is strictly restricted to microglial cells in zebrafish has never been investigated. RESULTS: Having demonstrated that 4C4 is able to capture its native antigen from adult brain lysates, we used immunoprecipitation/mass-spectrometry, coupled to recombinant expression analyses, to identify its target. The cognate antigen was found to be a paralog of Galectin 3 binding protein (Lgals3bpb), known as MAC2-binding protein in mammals. Notably, 4C4 did not recognize other paralogs, demonstrating specificity. Moreover, our data show that Lgals3bpb expression, while ubiquitous in microglia, also identifies leukocytes in the periphery, including populations of gut and liver macrophages. CONCLUSIONS: The 4C4 monoclonal antibody recognizes Lgals3bpb, a predicted highly glycosylated protein whose function in the microglial lineage is currently unknown. Identification of Lgals3bpb as a new pan-microglia marker will be fundamental in forthcoming studies using the zebrafish model.


Asunto(s)
Anticuerpos Monoclonales , Microglía , Animales , Microglía/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Pez Cebra , Galectina 3/metabolismo , Macrófagos/metabolismo , Mamíferos
3.
Mol Oncol ; 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36453028

RESUMEN

Malignant pleural mesothelioma (MPM) is an aggressive cancer with limited therapeutic options. We evaluated the impact of CDK4/6 inhibition by palbociclib in 28 MPM cell lines including 19 patient-derived ones, using various approaches including RNA-sequencing. Palbociclib strongly and durably inhibited the proliferation of 23 cell lines, indicating a unique sensitivity of MPM to CDK4/6 inhibition. When observed, insensitivity to palbociclib was mostly explained by the lack of active T172-phosphorylated CDK4. This was associated with high p16INK4A (CDKN2A) levels that accompany RB1 defects or inactivation, or (unexpectedly) CCNE1 overexpression in the presence of wild-type RB1. Prolonged palbociclib treatment irreversibly inhibited proliferation despite re-induction of cell cycle genes upon drug washout. A senescence-associated secretory phenotype including various potentially immunogenic components was irreversibly induced. Phosphorylated CDK4 was detected in 80% of 47 MPMs indicating their sensitivity to CDK4/6 inhibitors. Its absence in some highly proliferative MPMs was linked to very high p16 (CDKN2A) expression, which was also observed in public datasets in tumours from short-survival patients. Our study supports the evaluation of CDK4/6 inhibitors for MPM treatment, in monotherapy or combination therapy.

4.
Biology (Basel) ; 10(4)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810377

RESUMEN

Esophageal squamous cell carcinoma (eSCC) accounts for more than 85% cases of esophageal cancer worldwide and the 5-year survival rate associated with metastatic eSCC is poor. This low survival rate is the consequence of a complex mechanism of resistance to therapy and tumor relapse. To effectively reduce the mortality rate of this disease, we need to better understand the molecular mechanisms underlying the development of resistance to therapy and translate that knowledge into novel approaches for cancer treatment. The circadian clock orchestrates several physiological processes through the establishment and synchronization of circadian rhythms. Since cancer cells need to fuel rapid proliferation and increased metabolic demands, the escape from circadian rhythm is relevant in tumorigenesis. Although clock related genes may be globally repressed in human eSCC samples, PER2 expression still oscillates in some human eSCC cell lines. However, the consequences of this circadian rhythm are still unclear. In the present study, we confirm that PER2 oscillations still occur in human cancer cells in vitro in spite of a deregulated circadian clock gene expression. Profiling of eSCC cells by RNAseq reveals that when PER2 expression is low, several transcripts related to apoptosis are upregulated. Consistently, treating eSCC cells with cisplatin when PER2 expression is low enhances DNA damage and leads to a higher apoptosis rate. Interestingly, this process is conserved in a mouse model of chemically-induced eSCC ex vivo. These results therefore suggest that response to therapy might be enhanced in esophageal cancers using chronotherapy.

5.
PLoS Genet ; 16(11): e1009084, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33147210

RESUMEN

The liver possesses a remarkable regenerative capacity based partly on the ability of hepatocytes to re-enter the cell cycle and divide to replace damaged cells. This capability is substantially reduced upon chronic damage, but it is not clear if this is a cause or consequence of liver disease. Here, we investigate whether blocking hepatocyte division using two different mouse models affects physiology as well as clinical liver manifestations like fibrosis and inflammation. We find that in P14 Cdk1Liv-/- mice, where the division of hepatocytes is abolished, polyploidy, DNA damage, and increased p53 signaling are prevalent. Cdk1Liv-/- mice display classical markers of liver damage two weeks after birth, including elevated ALT, ALP, and bilirubin levels, despite the lack of exogenous liver injury. Inflammation was further studied using cytokine arrays, unveiling elevated levels of CCL2, TIMP1, CXCL10, and IL1-Rn in Cdk1Liv-/- liver, which resulted in increased numbers of monocytes. Ablation of CDK2-dependent DNA re-replication and polyploidy in Cdk1Liv-/- mice reversed most of these phenotypes. Overall, our data indicate that blocking hepatocyte division induces biological processes driving the onset of the disease phenotype. It suggests that the decrease in hepatocyte division observed in liver disease may not only be a consequence of fibrosis and inflammation, but also a pathological cue.


Asunto(s)
División Celular/fisiología , Hepatocitos/fisiología , Cirrosis Hepática/metabolismo , Animales , Apoptosis/fisiología , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Ciclo Celular , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis/fisiopatología , Hepatitis/metabolismo , Hepatitis/fisiopatología , Hepatocitos/metabolismo , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Ratones , Ratones Noqueados , Transducción de Señal
6.
Oncogene ; 39(44): 6816-6840, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32978522

RESUMEN

Progression through mitosis is balanced by the timely regulation of phosphorylation and dephosphorylation events ensuring the correct segregation of chromosomes before cytokinesis. This balance is regulated by the opposing actions of CDK1 and PP2A, as well as the Greatwall kinase/MASTL. MASTL is commonly overexpressed in cancer, which makes it a potential therapeutic anticancer target. Loss of Mastl induces multiple chromosomal errors that lead to the accumulation of micronuclei and multilobulated cells in mitosis. Our analyses revealed that loss of Mastl leads to chromosome breaks and abnormalities impairing correct segregation. Phospho-proteomic data for Mastl knockout cells revealed alterations in proteins implicated in multiple processes during mitosis including double-strand DNA damage repair. In silico prediction of the kinases with affected activity unveiled NEK2 to be regulated in the absence of Mastl. We uncovered that, RAD51AP1, involved in regulation of homologous recombination, is phosphorylated by NEK2 and CDK1 but also efficiently dephosphorylated by PP2A/B55. Our results suggest that MastlKO disturbs the equilibrium of the mitotic phosphoproteome that leads to the disruption of DNA damage repair and triggers an accumulation of chromosome breaks even in noncancerous cells.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Rotura Cromosómica , Segregación Cromosómica , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Fibroblastos , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Quinasas Relacionadas con NIMA/metabolismo , Fosforilación/genética , Cultivo Primario de Células , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Proteínas de Unión al ARN/metabolismo
7.
Oncogene ; 39(9): 2030, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31754212

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
J Cell Biol ; 218(9): 2896-2918, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31350280

RESUMEN

Meiosis generates four genetically distinct haploid gametes over the course of two reductional cell divisions. Meiotic divisions are characterized by the coordinated deposition and removal of various epigenetic marks. Here we propose that nuclear respiratory factor 1 (NRF1) regulates transcription of euchromatic histone methyltransferase 1 (EHMT1) to ensure normal patterns of H3K9 methylation during meiotic prophase I. We demonstrate that cyclin-dependent kinase (CDK2) can bind to the promoters of a number of genes in male germ cells including that of Ehmt1 through interaction with the NRF1 transcription factor. Our data indicate that CDK2-mediated phosphorylation of NRF1 can occur at two distinct serine residues and negatively regulates NRF1 DNA binding activity in vitro. Furthermore, induced deletion of Cdk2 in spermatocytes results in increased expression of many NRF1 target genes including Ehmt1 We hypothesize that the regulation of NRF1 transcriptional activity by CDK2 may allow the modulation of Ehmt1 expression, therefore controlling the dynamic methylation of H3K9 during meiotic prophase.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/metabolismo , Regulación Enzimológica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/biosíntesis , Profase Meiótica I/fisiología , Factor Nuclear 1 de Respiración/metabolismo , Espermatocitos/metabolismo , Animales , Quinasa 2 Dependiente de la Ciclina/genética , Eliminación de Gen , N-Metiltransferasa de Histona-Lisina/genética , Masculino , Ratones , Ratones Noqueados , Factor Nuclear 1 de Respiración/genética , Espermatocitos/citología
9.
Oncogene ; 38(7): 998-1018, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30190546

RESUMEN

Cell cycle regulation, especially faithful DNA replication and mitosis, are crucial to maintain genome stability. Cyclin-dependent kinase (CDK)/cyclin complexes drive most processes in cellular proliferation. In response to DNA damage, cell cycle surveillance mechanisms enable normal cells to arrest and undergo repair processes. Perturbations in genomic stability can lead to tumor development and suggest that cell cycle regulators could be effective targets in anticancer therapy. However, many clinical trials ended in failure due to off-target effects of the inhibitors used. Here, we investigate in vivo the importance of WEE1- and MYT1-dependent inhibitory phosphorylation of mammalian CDK1. We generated Cdk1AF knockin mice, in which two inhibitory phosphorylation sites are replaced by the non-phosphorylatable amino acids T14A/Y15F. We uncovered that monoallelic expression of CDK1AF is early embryonic lethal in mice and induces S phase arrest accompanied by γH2AX and DNA damage checkpoint activation in mouse embryonic fibroblasts (MEFs). The chromosomal fragmentation in Cdk1AF MEFs does not rely on CDK2 and is partly caused by premature activation of MUS81-SLX4 structure-specific endonuclease complexes, as well as untimely onset of chromosome condensation followed by nuclear lamina disassembly. We provide evidence that tumor development in liver expressing CDK1AF is inhibited. Interestingly, the regulatory mechanisms that impede cell proliferation in CDK1AF expressing cells differ partially from the actions of the WEE1 inhibitor, MK-1775, with p53 expression determining the sensitivity of cells to the drug response. Thus, our work highlights the importance of improved therapeutic strategies for patients with various cancer types and may explain why some patients respond better to WEE1 inhibitors.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Pérdida del Embrión/enzimología , Embrión de Mamíferos/enzimología , Mitosis , Fase S , Sustitución de Aminoácidos , Animales , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Pérdida del Embrión/genética , Pérdida del Embrión/patología , Embrión de Mamíferos/patología , Activación Enzimática , Ratones , Ratones Transgénicos , Mutación Missense , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Cell ; 173(6): 1481-1494.e13, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29706543

RESUMEN

Global profiling of protein expression through the cell cycle has revealed subsets of periodically expressed proteins. However, expression levels alone only give a partial view of the biochemical processes determining cellular events. Using a proteome-wide implementation of the cellular thermal shift assay (CETSA) to study specific cell-cycle phases, we uncover changes of interaction states for more than 750 proteins during the cell cycle. Notably, many protein complexes are modulated in specific cell-cycle phases, reflecting their roles in processes such as DNA replication, chromatin remodeling, transcription, translation, and disintegration of the nuclear envelope. Surprisingly, only small differences in the interaction states were seen between the G1 and the G2 phase, suggesting similar hardwiring of biochemical processes in these two phases. The present work reveals novel molecular details of the cell cycle and establishes proteome-wide CETSA as a new strategy to study modulation of protein-interaction states in intact cells.


Asunto(s)
Ciclo Celular , Mapeo de Interacción de Proteínas , División Celular , Cromatina/química , Análisis por Conglomerados , Replicación del ADN , Fase G1 , Fase G2 , Humanos , Células K562 , Membrana Nuclear , Proteoma , Proteómica/métodos
11.
Science ; 359(6380): 1170-1177, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29439025

RESUMEN

Proteins differentially interact with each other across cellular states and conditions, but an efficient proteome-wide strategy to monitor them is lacking. We report the application of thermal proximity coaggregation (TPCA) for high-throughput intracellular monitoring of protein complex dynamics. Significant TPCA signatures observed among well-validated protein-protein interactions correlate positively with interaction stoichiometry and are statistically observable in more than 350 annotated human protein complexes. Using TPCA, we identified many complexes without detectable differential protein expression, including chromatin-associated complexes, modulated in S phase of the cell cycle. Comparison of six cell lines by TPCA revealed cell-specific interactions even in fundamental cellular processes. TPCA constitutes an approach for system-wide studies of protein complexes in nonengineered cells and tissues and might be used to identify protein complexes that are modulated in diseases.


Asunto(s)
Complejos Multiproteicos/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Línea Celular , Células , Cromatina/metabolismo , Calor , Humanos , Análisis por Matrices de Proteínas , Biosíntesis de Proteínas , Pliegue de Proteína , Proteoma
12.
Am J Hum Genet ; 101(3): 391-403, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28886341

RESUMEN

In five separate families, we identified nine individuals affected by a previously unidentified syndrome characterized by growth retardation, spine malformation, facial dysmorphisms, and developmental delays. Using homozygosity mapping, array CGH, and exome sequencing, we uncovered bi-allelic loss-of-function CDK10 mutations segregating with this disease. CDK10 is a protein kinase that partners with cyclin M to phosphorylate substrates such as ETS2 and PKN2 in order to modulate cellular growth. To validate and model the pathogenicity of these CDK10 germline mutations, we generated conditional-knockout mice. Homozygous Cdk10-knockout mice died postnatally with severe growth retardation, skeletal defects, and kidney and lung abnormalities, symptoms that partly resemble the disease's effect in humans. Fibroblasts derived from affected individuals and Cdk10-knockout mouse embryonic fibroblasts (MEFs) proliferated normally; however, Cdk10-knockout MEFs developed longer cilia. Comparative transcriptomic analysis of mutant and wild-type mouse organs revealed lipid metabolic changes consistent with growth impairment and altered ciliogenesis in the absence of CDK10. Our results document the CDK10 loss-of-function phenotype and point to a function for CDK10 in transducing signals received at the primary cilia to sustain embryonic and postnatal development.


Asunto(s)
Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/fisiología , Discapacidades del Desarrollo/genética , Trastornos del Crecimiento/genética , Mutación , Columna Vertebral/anomalías , Columna Vertebral/patología , Animales , Ciclo Celular , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Cilios/metabolismo , Cilios/patología , Discapacidades del Desarrollo/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Trastornos del Crecimiento/patología , Humanos , Lactante , Masculino , Ratones , Ratones Noqueados , Linaje , Fosforilación , Transducción de Señal , Columna Vertebral/metabolismo
13.
J Biol Chem ; 292(9): 3841-3853, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28100774

RESUMEN

The failure of pancreatic islet ß-cells is a major contributor to the etiology of type 2 diabetes. ß-Cell dysfunction and declining ß-cell mass are two mechanisms that contribute to this failure, although it is unclear whether they are molecularly linked. Here, we show that the cell cycle regulator, cyclin-dependent kinase 2 (CDK2), couples primary ß-cell dysfunction to the progressive deterioration of ß-cell mass in diabetes. Mice with pancreas-specific deletion of Cdk2 are glucose-intolerant, primarily due to defects in glucose-stimulated insulin secretion. Accompanying this loss of secretion are defects in ß-cell metabolism and perturbed mitochondrial structure. Persistent insulin secretion defects culminate in progressive deficits in ß-cell proliferation, reduced ß-cell mass, and diabetes. These outcomes may be mediated directly by the loss of CDK2, which binds to and phosphorylates the transcription factor FOXO1 in a glucose-dependent manner. Further, we identified a requirement for CDK2 in the compensatory increases in ß-cell mass that occur in response to age- and diet-induced stress. Thus, CDK2 serves as an important nexus linking primary ß-cell dysfunction to progressive ß-cell mass deterioration in diabetes.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/metabolismo , Diabetes Mellitus Experimental/patología , Células Secretoras de Insulina/patología , Páncreas/patología , Animales , Peso Corporal , Proliferación Celular , Quinasa 2 Dependiente de la Ciclina/genética , Dieta Alta en Grasa , Progresión de la Enfermedad , Femenino , Genotipo , Glucosa/química , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Masculino , Ratones , Ratones Noqueados , Microscopía Fluorescente , Fenotipo , Fosforilación
14.
PLoS Genet ; 12(9): e1006310, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27631493

RESUMEN

The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing.


Asunto(s)
Proteína Quinasa CDC2/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas Asociadas a Microtúbulos/genética , Proteína Fosfatasa 2/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Segregación Cromosómica/genética , Citocinesis/genética , Cinetocoros/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Mitosis/genética , Fosforilación , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/genética
15.
Cell Cycle ; 15(22): 3070-3081, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27657745

RESUMEN

Cyclin A2 is an essential gene for development and in haematopoietic stem cells and therefore its functions in definitive erythropoiesis have not been investigated. We have ablated cyclin A2 in committed erythroid progenitors in vivo using erythropoietin receptor promoter-driven Cre, which revealed its critical role in regulating erythrocyte morphology and numbers. Erythroid-specific cyclin A2 knockout mice are viable but displayed increased mean erythrocyte volume and reduced erythrocyte counts, as well as increased frequency of erythrocytes containing Howell-Jolly bodies. Erythroblasts lacking cyclin A2 displayed defective enucleation, resulting in reduced production of enucleated erythrocytes and increased frequencies of erythrocytes containing nuclear remnants. Deletion of the Cdk inhibitor p27Kip1 but not Cdk2, ameliorated the erythroid defects resulting from deficiency of cyclin A2, confirming the critical role of cyclin A2/Cdk activity in erythroid development. Loss of cyclin A2 in bone marrow cells in semisolid culture prevented the formation of BFU-E but not CFU-E colonies, uncovering its essential role in BFU-E function. Our data unveils the critical functions of cyclin A2 in regulating mammalian erythropoiesis.


Asunto(s)
Forma de la Célula , Ciclina A2/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Bromodesoxiuridina/metabolismo , Recuento de Células , Ciclo Celular , Núcleo Celular/metabolismo , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Células Eritroides/citología , Células Eritroides/metabolismo , Eritropoyesis , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/metabolismo , Ratones Endogámicos C57BL , Fenotipo , Regiones Promotoras Genéticas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo
16.
Biochem J ; 473(18): 2783-98, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27371320

RESUMEN

Cyclin-dependent kinases (Cdks) control the eukaryotic cell cycle by phosphorylating serine and threonine residues in key regulatory proteins, but some Cdk family members may exert kinase-independent functions that cannot easily be assessed using gene knockout approaches. While Cdk2-deficient mice display near-normal mitotic cell proliferation due to the compensatory activities of Cdk1 and Cdk4, they are unable to undergo meiotic generation of gametes and are consequently sterile. To investigate whether Cdk2 regulates meiosis via protein phosphorylation or by alternative kinase-independent mechanisms, we generated two different knockin mouse strains in which Cdk2 point mutations ablated enzyme activity without altering protein expression levels. Mice homozygous for the mutations Cdk2(D145N/D145N) or Cdk2(T160A/T160A) expressed only 'kinase-dead' variants of Cdk2 under the control of the endogenous promoter, and despite exhibiting normal expression of cell cycle regulatory proteins and complexes, both mutations rendered mice sterile. Mouse cells that expressed only 'kinase-dead' variants of Cdk2 displayed normal mitotic cell cycle progression and proliferation both in vitro and in vivo, indicating that loss of Cdk2 kinase activity exerted little effect on this mode of cell division. In contrast, the reproductive organs of Cdk2 mutant mice exhibited abnormal morphology and impaired function associated with defective meiotic cell division and inability to produce gametes. Cdk2 mutant animals were therefore comparable to gene knockout mice, which completely lack the Cdk2 protein. Together, our data indicate that the essential meiotic functions of Cdk2 depend on its kinase activity, without which the generation of haploid cells is disrupted, resulting in sterility of otherwise healthy animals.


Asunto(s)
Meiosis , Animales , Biocatálisis , Ciclo Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Infertilidad Masculina/genética , Masculino , Ratones , Mutación , Testículo/citología , Timo/citología
17.
Proc Natl Acad Sci U S A ; 112(49): 15160-5, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26598692

RESUMEN

The Wee1 cell cycle checkpoint kinase prevents premature mitotic entry by inhibiting cyclin-dependent kinases. Chemical inhibitors of Wee1 are currently being tested clinically as targeted anticancer drugs. Wee1 inhibition is thought to be preferentially cytotoxic in p53-defective cancer cells. However, TP53 mutant cancers do not respond consistently to Wee1 inhibitor treatment, indicating the existence of genetic determinants of Wee1 inhibitor sensitivity other than TP53 status. To optimally facilitate patient selection for Wee1 inhibition and uncover potential resistance mechanisms, identification of these currently unknown genes is necessary. The aim of this study was therefore to identify gene mutations that determine Wee1 inhibitor sensitivity. We performed a genome-wide unbiased functional genetic screen in TP53 mutant near-haploid KBM-7 cells using gene-trap insertional mutagenesis. Insertion site mapping of cells that survived long-term Wee1 inhibition revealed enrichment of G1/S regulatory genes, including SKP2, CUL1, and CDK2. Stable depletion of SKP2, CUL1, or CDK2 or chemical Cdk2 inhibition rescued the γ-H2AX induction and abrogation of G2 phase as induced by Wee1 inhibition in breast and ovarian cancer cell lines. Remarkably, live cell imaging showed that depletion of SKP2, CUL1, or CDK2 did not rescue the Wee1 inhibition-induced karyokinesis and cytokinesis defects. These data indicate that the activity of the DNA replication machinery, beyond TP53 mutation status, determines Wee1 inhibitor sensitivity, and could serve as a selection criterion for Wee1-inhibitor eligible patients. Conversely, loss of the identified S-phase genes could serve as a mechanism of acquired resistance, which goes along with development of severe genomic instability.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Fase G1 , Haploidia , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Fase S , Fase G1/genética , Humanos , Fase S/genética
18.
Haematologica ; 100(4): 431-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25616574

RESUMEN

Mouse knockouts of Cdk2 and Cdk4 are individually viable whereas the double knockouts are embryonic lethal due to heart defects, and this precludes the investigation of their overlapping roles in definitive hematopoiesis. Here we use a conditional knockout mouse model to investigate the effect of combined loss of Cdk2 and Cdk4 in hematopoietic cells. Cdk2(fl/fl)Cdk4(-/-)vavCre mice are viable but displayed a significant increase in erythrocyte size. Cdk2(fl/fl)Cdk4(-/-)vavCre mouse bone marrow exhibited reduced phosphorylation of the retinoblastoma protein and reduced expression of E2F target genes such as cyclin A2 and Cdk1. Erythroblasts lacking Cdk2 and Cdk4 displayed a lengthened G1 phase due to impaired phosphorylation of the retinoblastoma protein. Deletion of the retinoblastoma protein rescued the increased size displayed by erythrocytes lacking Cdk2 and Cdk4, indicating that the retinoblastoma/Cdk2/Cdk4 pathway regulates erythrocyte size. The recovery of platelet counts following a 5-fluorouracil challenge was delayed in Cdk2(fl/fl)Cdk4(-/-)vavCre mice revealing a critical role for Cdk2 and Cdk4 in stress hematopoiesis. Our data indicate that Cdk2 and Cdk4 play important overlapping roles in homeostatic and stress hematopoiesis, which need to be considered when using broad-spectrum cyclin-dependent kinase inhibitors for cancer therapy.


Asunto(s)
Plaquetas/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Eritrocitos/citología , Hematopoyesis/genética , Estrés Fisiológico , Animales , Tamaño de la Célula , Quinasa 2 Dependiente de la Ciclina/deficiencia , Quinasa 4 Dependiente de la Ciclina/deficiencia , Quinasa 4 Dependiente de la Ciclina/genética , Femenino , Eliminación de Gen , Hematócrito , Células Madre Hematopoyéticas/metabolismo , Inmunofenotipificación , Masculino , Ratones , Ratones Noqueados , Fenotipo , Ploidias , Proteína de Retinoblastoma/genética
19.
Cell Cycle ; 13(18): 2879-88, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25486476

RESUMEN

CDK4 and CDK6 bound to D-type cyclins are master integrators of G1 phase cell cycle regulations by initiating the inactivating phosphorylation of the central oncosuppressor pRb. Because of their frequent deregulation in cancer, cyclin D-CDK4/6 complexes are emerging as especially promising therapeutic targets. The specific CDK4/6 inhibitor PD0332991 is currently tested in a growing number of phase II/III clinical trials against a variety of pRb-proficient chemotherapy-resistant cancers. We have previously shown that PD0332991 inhibits not only CDK4/6 activity but also the activation by phosphorylation of the bulk of cyclin D-CDK4 complexes stabilized by p21 binding. Here we show that PD0332991 has either a positive or a negative impact on the activation of cyclin D-CDK4/6 complexes, depending on their binding to p21. Indeed, whereas PD0332991 inhibits the phosphorylation and activity of p21-bound CDK4/6, it specifically stabilized activated cyclin D3-CDK4/6 complexes devoid of p21 and p27. After elimination of PD0332991, these activated cyclin D3-CDK4/6 complexes persisted for at least 24 h, resulting in paradoxical cell cycle entry in the absence of a mitogenic stimulation. This unsuspected positive effect of PD0332991 on cyclin D3-CDK4/6 activation should be carefully assessed in the clinical evaluation of PD0332991, which until now only involves discontinuous administration protocols.


Asunto(s)
Ciclina D3/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Animales , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Medio de Cultivo Libre de Suero , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , ADN/biosíntesis , Humanos , Fosforilación/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteína de Retinoblastoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...