Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838412

RESUMEN

Lateritic duricrusts cover iron ore deposits and form spatially restricted, unique canga ecosystems endangered by mining. Iron cycling, i.e., the dissolution and subsequent precipitation of iron, is able to restitute canga duricrusts, generating new habitats for endangered biota in post-mining landscapes. As iron-reducing bacteria can accelerate this iron cycling, we aim to retrieve microbial enrichment cultures suitable to mediate the large-scale restoration of cangas. For that, we collected water and sediment samples from the Carajás National Forest and cultivated the iron-reducing microorganisms therein using a specific medium. We measured the potential to reduce iron using ferrozine assays, growth rate and metabolic activity. Six out of seven enrichment cultures effectively reduced iron, showing that different environments harbor iron-reducing bacteria. The most promising enrichment cultures were obtained from environments with repeated flooding and drying cycles, i.e., periodically inundated grasslands and a plateau of an iron mining waste pile characterized by frequent soaking. Selected enrichment cultures contained iron-reducing and fermenting bacteria, such as Serratia and Enterobacter. We found higher iron-reducing potential in enrichment cultures with a higher cell density and microorganism diversity. The obtained enrichment cultures should be tested for canga restoration to generate benefits for biodiversity and contribute to more sustainable iron mining in the region.

2.
Front Bioeng Biotechnol ; 10: 1048412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36524050

RESUMEN

Sulfate-reducing bioreactors are a biotechnological alternative for the treatment of acid mine drainage (AMD). In this study, two separate bioreactors with pH and temperature-controlled (Bio I and II) were operated with two different acidophilic microbial consortia to determine their efficiencies in sulfate removal from a synthetic acidic mine water. The bioreactors were operated for 302 days in continuous flow mode under the same parameters: fed with a sulfate solution of ∼30 mM with a pH of 2.5, the temperature at 30°C, stirred gently at 40 rpm and using a continuous stream of nitrogen to help remove the H2S produced in the bioreactor. The glycerol consumption, acetate production, and sulfate removal were monitored throughout the course of the experiment. The community composition and potential metabolic functional groups were analyzed via 16S rRNA partial gene sequencing. Bio I consortium reduced the sulfate, achieving a range of sulfate concentration from 4.7 to 19 mM in the effluent liquor. The removal of sulfate in Bio II was between 5.6 and 18 mM. Both bioreactors' communities showed the presence of the genus De sulfosporosinus as the main sulfate-reducing bacteria (SRB). Despite differences in microbial composition, both bioreactors have similar potential metabolism, with a higher percentage of microorganisms that can use sulfate in respiration. Overall, both bioreactors showed similar performance in treating acidic mine water containing mostly sulfate using two different acidophilic sulfidogenic consortia obtained from different global locations.

3.
Microb Biotechnol ; 13(6): 1960-1971, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32812342

RESUMEN

Accelerating microbial iron cycling is an innovative environmentally responsible strategy for mine remediation. In the present study, we extend the application of microbial iron cycling in environmental remediation, to include biocementation for the aggregation and stabilization of mine wastes. Microbial iron reduction was promoted monthly for 10 months in crushed canga (a by-product from iron ore mining, dominated by crystalline iron oxides) in 1 m3 containers. Ferrous iron concentrations reached 445 ppm in treatments and diverse lineages of the candidate phyla radiation dominated pore waters, implicating them in fermentation and/or metal cycling in this system. After a 6-month evaporation period, iron-rich cements had formed between grains and 20-cm aggregates were recoverable from treatments throughout the 1-m depth profile, while material from untreated and water-only controls remained unconsolidated. Canga-adapted plants seeded into one of the treatments germinated and grew well. Therefore, application of this geobiotechnology offers promise for stabilization of mine wastes, as well as re-formation of surface crusts that underpin unique and threatened plant ecosystems in iron ore regions.


Asunto(s)
Restauración y Remediación Ambiental , Hierro , Cementación , Ecosistema , Minería
4.
Mar Pollut Bull ; 109(1): 386-392, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27236233

RESUMEN

A bacterial consortium was selected in the presence of Cu from sediment samples taken from Sepetiba Bay, Brazil, which is a site historically contaminated by metals. Bacteria were exposed to 0, 1, 6, 12.5, 25 and 50µg·mL(-1) Cu, Pb and Cu+Pb for 11days of bioassay. Results showed Alcanivorax dominance (81%) and cell counts of 10(8)cells·mL(-1). However, a reduction in dehydrogenase activity was observed from the fifth day of exposure for all Cu, Pb, and Cu+Pb concentrations tested. Esterase activity tended to increase, indicating higher energy demand to complete the bacterial lifecycle. Pb concentrations in the filtered culture medium (0.2µm) were below the detection limit, indicating biosorption, whereas concentrations of Cu were close to the tested concentrations, indicative of efflux. Results suggest the need for biomarkers, such as esterase and dehydrogenase enzymatic activity, in the assessment of resistance and tolerance of communities previously exposed to stressors.


Asunto(s)
Bacterias , Cobre , Plomo , Consorcios Microbianos , Biodegradación Ambiental , Brasil
5.
Environ Sci Pollut Res Int ; 22(8): 6236-45, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25408072

RESUMEN

The aim of this study was to evaluate the Zn sensitivity of Euplotes vannus, Euplotes crassus, and their naturally associated bacteria sampled from sediments in the northwest and east regions of Guanabara Bay. The unexposed ciliates and bacteria did not appear to be negatively affected by 96 h of assay. In the control group, E. vannus exhibited an increase in the biomass content from 2.3 × 10(2) to 2.3 × 10(3) µg C cm(-3) between 0 and 96 h, and E. crassus increased up to 7.07 × 10(2) µg C cm(-3) at 48 h. The maximum biomass was pointed by E. crassus (1.33 × 10(3) µg C cm(-3)) in the presence of 0.005 mg Zn L(-1) and E. vannus was naturally associated bacteria (2.40 × 10(-1) µg C cm(-3)) in the presence of 1.0 mg Zn L(-1) (96 h). The growth of E. vannus from the northwest region showed concentration-dependent manners, and it is more sensitive to zinc than E. crassus from the southeast. Naturally associated bacteria showed better adaptation to increasing concentrations of Zn, and the Dunnett test showed that previous environmental selection is important. These results show that new bioremediation tools are necessary.


Asunto(s)
Bacterias/efectos de los fármacos , Bahías/química , Euplotes/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Zinc/farmacología , Biodegradación Ambiental , Bioensayo , Brasil , Euplotes/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...