Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
2.
Microorganisms ; 11(8)2023 Jul 28.
Article En | MEDLINE | ID: mdl-37630493

The Candidate Phyla Radiation (CPR) was found to harbor a vast repertoire of genes encoding for enzymes with potential antibiotic resistance activity. Among these, as many as 3349 genes were predicted in silico to contain a metallo-beta-lactamase-like (MBL-like) fold. These proteins were subject to an in silico functional characterization by comparing their protein profiles (presence/absence of conserved protein domains) to other MBLs, including 24 already expressed in vitro, along with those of the beta-lactamase database (BLDB) (n = 761). The sequence similarity network (SSN) was then used to predict the functional clusters of CPR MBL-like sequences. Our findings showed that CPR MBL-like sequences were longer and more diverse than bacterial MBL sequences, with a high content of functional domains. Most CPR MBL-like sequences did not show any SSN connectivity with expressed MBLs, indicating the presence of many potential, yet unidentified, functions in CPR. In conclusion, CPR was shown to have many protein functions and a large sequence variability of MBL-like folds, exceeding all known MBLs. Further experimental and evolutionary studies of this superfamily of hydrolyzing enzymes are necessary to illustrate their functional annotation, origin, and expansion for adaptation or specialization within a given niche or compared to a specific substrate.

3.
Front Cell Infect Microbiol ; 13: 1195679, 2023.
Article En | MEDLINE | ID: mdl-37577371

Introduction: Candidate Phyla Radiation (CPR) and more specifically Candidatus Saccharibacteria (TM7) have now been established as ubiquitous members of the human oral microbiota. Additionally, CPR have been reported in the gastrointestinal and urogenital tracts. However, the exploration of new human niches has been limited to date. Methods: In this study, we performed a prospective and retrospective screening of TM7 in human samples using standard PCR, real-time PCR, scanning electron microscopy (SEM) and shotgun metagenomics. Results: Using Real-time PCR and standard PCR, oral samples presented the highest TM7 prevalence followed by fecal samples, breast milk samples, vaginal samples and urine samples. Surprisingly, TM7 were also detected in infectious samples, namely cardiac valves and blood cultures at a low prevalence (under 3%). Moreover, we observed CPR-like structures using SEM in all sample types except cardiac valves. The reconstruction of TM7 genomes in oral and fecal samples from shotgun metagenomics reads further confirmed their high prevalence in some samples. Conclusion: This study confirmed, through their detection in multiple human samples, that TM7 are human commensals that can also be found in clinical settings. Their detection in clinical samples warrants further studies to explore their role in a pathological setting.


Bacteria , Microbiota , Female , Humans , Prospective Studies , Retrospective Studies , Bacteria/genetics , Real-Time Polymerase Chain Reaction
4.
Microorganisms ; 11(5)2023 May 07.
Article En | MEDLINE | ID: mdl-37317205

Microbial ecology is a critical field for understanding the composition, diversity, and functions of microorganisms in various environmental and health-related processes. The discovery of Candidate Phyla Radiation (CPR) through culture-independent methods has introduced a new division of microbes characterized by a symbiotic/parasitic lifestyle, small cell size, and small genome. Despite being poorly understood, CPRs have garnered significant attention in recent years due to their widespread detection in a variety of environmental and clinical samples. These microorganisms have been found to exhibit a high degree of genetic diversity compared to other microbes. Several studies have shed light on their potential importance in global biogeochemical cycles and their impact on various human activities. In this review, we provide a systematic overview of the discovery of CPRs. We then focus on describing how the genomic characteristics of CPRs have helped them interact with and adapt to other microbes in different ecological niches. Future works should focus on discovering the metabolic capacities of CPRs and, if possible, isolating them to obtain a better understanding of these microorganisms.

5.
Clin Microbiol Rev ; 35(3): e0014021, 2022 09 21.
Article En | MEDLINE | ID: mdl-35658516

Candidate phyla radiation (CPR) is an emerging division of the bacterial domain within the human microbiota. Still poorly known, these microorganisms were first described in the environment in 1981 as "ultramicrobacteria" with a cell volume under 0.1 µm3 and were first associated with the human oral microbiota in 2007. The evolution of technology has been paramount for the study of CPR within the human microbiota. In fact, since these ultramicrobacteria have yet to be axenically cultured despite ongoing efforts, progress in imaging technology has allowed their observation and morphological description. Although their genomic abilities and taxonomy are still being studied, great strides have been made regarding their taxonomic classification, as well as their lifestyle. In addition, advancements in next-generation sequencing and the continued development of bioinformatics tools have allowed their detection as commensals in different human habitats, including the oral cavity and gastrointestinal and genital tracts, thus highlighting CPR as a nonnegligible part of the human microbiota with an impact on physiological settings. Conversely, several pathologies present dysbiosis affecting CPR levels, including inflammatory, mucosal, and infectious diseases. In this exhaustive review of the literature, we provide a historical perspective on the study of CPR, an overview of the methods available to study these organisms and a description of their taxonomy and lifestyle. In addition, their distribution in the human microbiome is presented in both homeostatic and dysbiotic settings. Future efforts should focus on developing cocultures and, if possible, axenic cultures to obtain isolates and therefore genomes that would provide a better understanding of these ultramicrobacteria, the importance of which in the human microbiome is undeniable.


Microbiota , Bacteria , Dysbiosis , Humans , Mouth/microbiology
6.
Int J Mol Sci ; 23(10)2022 May 13.
Article En | MEDLINE | ID: mdl-35628255

The increased exploitation of microbial sequencing methods has shed light on the high diversity of new microorganisms named Candidate Phyla Radiation (CPR). CPR are mainly detected via 16S rRNA/metabarcoding analyses or metagenomics and are found to be abundant in all environments and present in different human microbiomes. These microbes, characterized by their symbiotic/epiparasitic lifestyle with bacteria, are directly exposed to competition with other microorganisms sharing the same ecological niche. Recently, a rich repertoire of enzymes with antibiotic resistance activity has been found in CPR genomes by using an in silico adapted screening strategy. This reservoir has shown a high prevalence of putative beta-lactamase-encoding genes. We expressed and purified five putative beta-lactamase sequences having the essential domains and functional motifs from class A and class B beta-lactamase. Their enzymatic activities were tested against various beta-lactam substrates using liquid chromatography-mass spectrometry (LC-MS) and showed some beta-lactamase activity even in the presence of a beta-lactamase inhibitor. In addition, ribonuclease activity was demonstrated against RNA that was not inhibited by sulbactam and EDTA. None of these proteins could degrade single- and double-stranded-DNA. This study is the first to express and test putative CPR beta-lactamase protein sequences in vitro. Our findings highlight that the reduced genomes of CPR members harbor sequences encoding for beta-lactamases known to be multifunction hydrolase enzymes.


beta-Lactamase Inhibitors , beta-Lactamases , Bacteria/genetics , Bacteria/metabolism , Humans , RNA, Ribosomal, 16S/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism , beta-Lactams
7.
Mycoses ; 65(7): 753-759, 2022 Jul.
Article En | MEDLINE | ID: mdl-35546294

BACKGROUND: Currently, Candida auris is among the most serious emerging pathogens that can be associated with nosocomial infections and outbreaks in intensive care units. Clinicians must be able to identify and manage it quickly. OBJECTIVE: Here, we report for the first time in Algeria seven cases of C. auris infection or colonisation. METHODS AND RESULTS: The strains were isolated from clinical sites including bronchial aspirates (n = 4), wound swabs (n = 1), urine sample (n = 1) and peritoneal fluid (n = 1), in patients admitted to the intensive care unit. Candida auris was identified both by MALDI-TOF and by sequencing the ITS region and the D1/D2 domain. Antifungal susceptibility testing was performed using the E-test method. Non-wildtype susceptibility was observed for five strains against fluconazole, itraconazole, voriconazole and caspofungin. Genotyping showed the presence of four clades (I-IV) in one hospital. CONCLUSIONS: Appropriate antifungal treatments with rapid and accurate microbial identification are the cornerstone for the management and control of C. auris infections.


Antifungal Agents , Candidiasis , Algeria/epidemiology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida/genetics , Candida auris , Candidiasis/diagnosis , Candidiasis/drug therapy , Candidiasis/epidemiology , Humans , Intensive Care Units , Microbial Sensitivity Tests
8.
Microorganisms ; 10(3)2022 Mar 11.
Article En | MEDLINE | ID: mdl-35336177

Microorganisms not yet cultured represent a large proportion of the microbes described to date. Progress in sequencing and metagenomic tools continues to increase microbial diversity without providing information on their physiological and pathophysiological characteristics, such as the recent discovery of enigmatic microbes belonging to Candidate Phyla Radiation (CPR). Reverse genomics is a recent technique allowing co-cultivation of a few CPR members, affiliated to the Saccharibacteria phylum, based on the analysis of their already-available genomes. Here, our aim is to designate a common system capable of cultivating any given taxon of this phylum from human samples. We managed to design, in silico, 11 common epitopes for all Saccharibacteria species recovered from the human oral cavity and which can serve as antigens via bioinformatics analyses. These sequences allow the synthesis of target antibodies, sorting Saccharibacteria spp. by flow cytometry and co-culturing them afterwards with adapted hosts. This epitope set can facilitate the cultivation of CPR in general, which in recent years has been considered a challenge for microbiologists, and subsequently contributes to better studying this new branch on the tree of life.

9.
mSystems ; 6(6): e0089821, 2021 Dec 21.
Article En | MEDLINE | ID: mdl-34874773

Microbes belonging to Candidate Phyla Radiation (CPR) have joined the tree of life as a new branch, thanks to the intensive application of metagenomics and sequencing technologies. CPR have been eventually identified by 16S rRNA analysis, and they represent more than 26% of microbial diversity. Despite their ultrasmall size, reduced genome, and metabolic pathways which mainly depend on exosymbiotic or exoparasitic relationships with the bacterial host, CPR microbes were found to be abundant in almost all environments. They can be considered survivors in highly competitive circumstances within microbial communities. However, their defense mechanisms and phenotypic characteristic remain poorly explored. Here, we conducted a thorough in silico analysis on 4,062 CPR genomes to search for antibiotic resistance (AR)-like enzymes using BLASTp and functional domain predictions against an exhaustive consensus AR database and conserved domain database (CDD), respectively. Our findings showed that a rich reservoir of divergent AR-like genes (n = 30,545 hits, mean = 7.5 hits/genome [0 to 41]) were distributed across the 13 CPR superphyla. These AR-like genes encode 89 different enzymes that are associated with 14 different chemical classes of antimicrobials. Most hits found (93.6%) were linked to glycopeptide, beta-lactam, macrolide-lincosamide-streptogramin (MLS), tetracycline, and aminoglycoside resistance. Moreover, two AR profiles were discerned for the Microgenomates group and "Candidatus Parcubacteria," which were distinct between them and differed from all other CPR superphyla. CPR cells seem to be active players during microbial competitive interactions; they are well equipped for microbial combat in different habitats, which ensures their natural survival and continued existence. IMPORTANCE To our knowledge, this study is one of the few studies that characterize the defense systems in the CPR group and describes the first repertoire of antibiotic resistance (AR) genes. The use of a BLAST approach with lenient criteria followed by a careful examination of the functional domains has yielded a variety of enzymes that mainly give three different mechanisms of action of resistance. Our genome analysis showed the existence of a rich reservoir of CPR resistome, which is associated with different antibiotic families. Moreover, this analysis revealed the hidden face of the reduced-genome CPR, particularly their weaponry with AR genes. These data suggest that CPR are competitive players in the microbial war, and they can be distinguished by specific AR profiles.

10.
J Fungi (Basel) ; 7(6)2021 May 29.
Article En | MEDLINE | ID: mdl-34072592

Candida auris is an emerging multidrug-resistant yeast causing nosocomial infections and associated with high mortality in immunocompromised patients. Rapid identification and characterisation are necessary for diagnosis and containing its spread. In this study, we present a selective culture medium for all C. auris clades. This medium is sensitive with a limit of detection ranging between 101 and 102 CFU/mL. The 100% specificity of SCA (specific C. auris) medium is confirmed on a set of 135 Candida strains, 50 bacterial species and 200 human stool samples. Thus, this medium specifically selects for C. auris isolation from clinical samples, allowing the latter to study its phenotypic profile.

11.
Int J Mol Sci ; 22(11)2021 May 26.
Article En | MEDLINE | ID: mdl-34073251

Living organisms interact with each other during their lifetime, leading to genomes rearrangement and sequences transfer. These well-known phenomena give these organisms mosaic genomes, which challenge their classification. Moreover, many findings occurred between the IXXth and XXIst century, especially the discovery of giant viruses and candidate phyla radiation (CPR). Here, we tried to provide an updated classification, which integrates 216 representative genomes of the current described organisms. The reclassification was expressed through a genetic network based on the total genomic content, not on a single gene to represent the tree of life. This rhizomal exploration represents, more accurately, the evolutionary relationships among the studied species. Our analyses show a separated branch named fifth TRUC (Things Resisting Uncompleted Classifications). This taxon groups CPRs together, independently from Bacteria, Archaea (which regrouped also Nanoarchaeota and Asgard members), Eukarya, and the giant viruses (recognized recently as fourth TRUC). Finally, the broadening of analysis methods will lead to the discovery of new organisms, which justify the importance of updating the classification at every opportunity. In this perspective, our pragmatic representation could be adjusted along with the progress of evolutionary studies.


Archaea/classification , Bacteria/classification , Rhizome , Soil Microbiology , Viruses/classification , Rhizome/microbiology , Rhizome/virology
12.
Pharmaceuticals (Basel) ; 14(5)2021 May 20.
Article En | MEDLINE | ID: mdl-34065420

Immunodepression, whether due to HIV infection or organ transplantation, has increased human vulnerability to fungal infections. These conditions have created an optimal environment for the emergence of opportunistic infections, which is concomitant to the increase in antifungal resistance. The use of conventional antifungal drugs as azoles and polyenes can lead to clinical failure, particularly in immunocompromised individuals. Difficulties related to treating fungal infections combined with the time required to develop new drugs, require urgent consideration of other therapeutic alternatives. Drug repurposing is one of the most promising and rapid solutions that the scientific and medical community can turn to, with low costs and safety advantages. To treat life-threatening resistant fungal infections, drug repurposing has led to the consideration of well-known and potential molecules as a last-line therapy. The aim of this review is to provide a summary of current antifungal compounds and their main resistance mechanisms, following by an overview of the antifungal activity of non-traditional antimicrobial drugs. We provide their eventual mechanisms of action and the synergistic combinations that improve the activity of current antifungal treatments. Finally, we discuss drug repurposing for the main emerging multidrug resistant (MDR) fungus, including the Candida auris, Aspergillus or Cryptococcus species.

13.
Pathogens ; 10(3)2021 Mar 02.
Article En | MEDLINE | ID: mdl-33801236

Non-human primate populations act as potential reservoirs for human pathogens, including viruses, bacteria and parasites, which can lead to zoonotic infections. Furthermore, intestinal microorganisms may be pathogenic organisms to both non-human primates and humans. It is, therefore, essential to study the prevalence of these infectious agents in captive and wild non-human primates. This study aimed at showing the prevalence of the most frequently encountered human enteric protozoa in non-human primate populations based on qPCR detection. The three populations studied were common chimpanzees (Pan troglodytes) in Senegal and gorillas (Gorilla gorilla) in the Republic of the Congo and in the Beauval Zoo (France). Blastocystis spp. were mainly found, with an occurrence close to 100%, followed by Balantidiumcoli (23.7%), Giardiaintestinalis (7.9%), Encephalitozoonintestinalis (1.3%) and Dientamoebafragilis (0.2%). None of the following protozoa were detected: Entamoebahistolytica, Enterocytozoonbieneusi, Cryptosporidiumparvum, C. hominis, Cyclosporacayetanensis or Cystoisosporabelli. As chimpanzees and gorillas are genetically close to humans, it is important to monitor them frequently against different pathogens to protect these endangered species and to assess potential zoonotic transmissions to humans.

14.
Eur J Clin Microbiol Infect Dis ; 40(7): 1547-1551, 2021 Jul.
Article En | MEDLINE | ID: mdl-33515096

Candida auris is an emerging multiresistant pathogen causing nosocomial fungal infection. Specific detection and identification are necessary. Our goal is to develop a new qPCR system that enables rapid detection of C. auris, based on a GPI (glycosyl-phosphatidylinositol) protein-encoding gene. This system is reproducible and sensitive with a limit of detection of 13 C. auris CFU/qPCR reaction. The 100% specificity of this system is confirmed on 2073 clinical and environmental samples, 50 different bacterial species, and 9 Candida spp. (70 strains). This system is suitable to correctly identify C. auris infections and to trace its source.


Candida/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Environmental Microbiology , Reproducibility of Results , Sensitivity and Specificity , Species Specificity
15.
Microbiol Spectr ; 9(3): e0106921, 2021 12 22.
Article En | MEDLINE | ID: mdl-35007432

The growing application of metagenomics to different ecological and microbiome niches in recent years has enhanced our knowledge of global microbial biodiversity. Among these abundant and widespread microbes, the candidate phyla radiation (CPR) group has been recognized as representing a large proportion of the microbial kingdom (>26%). CPR are characterized by their obligate symbiotic or exoparasitic activity with other microbial hosts, mainly bacteria. Currently, isolating CPR is still considered challenging for microbiologists. The idea of this study was to develop an adapted protocol for the coculture of CPR with a suitable bacterial host. Based on various sputum samples, we tried to enrich CPR (Saccharibacteria members) and to cocultivate them with pure hosts (Schaalia odontolytica). This protocol was monitored by TaqMan real-time quantitative PCR (qPCR) using a system specific for Saccharibacteria designed in this study, as well as by electron microscopy and sequencing. We succeeded in coculturing and sequencing the complete genomes of two new Saccharibacteria species, "Candidatus Minimicrobia naudis" and "Candidatus Minimicrobia vallesae." In addition, we noticed a decrease in the CT values of Saccharibacteria and a significant multiplication through their physical association with Schaalia odontolytica strains in the enriched medium that we developed. This work may help bridge gaps in the genomic database by providing new CPR members, and in the future, their currently unknown characteristics may be revealed. IMPORTANCE In this study, the first TaqMan real-time quantitative PCR (qPCR) system, targeting Saccharibacteria phylum, has been developed. This technique can specifically quantify Saccharibacteria members in any sample of interest in order to investigate their prevalence. In addition, another easy, specific, and sensitive protocol has been developed to maintain the viability of Saccharibacteria cells in an enriched medium with their bacterial host. The use of this protocol facilitates subsequent studies of the phenotypic characteristics of CPR and their physical interactions with bacterial species, as well as the sequencing of new genomes to improve the current database.


Actinomycetaceae/growth & development , Bacteria/growth & development , Coculture Techniques/methods , Actinomycetaceae/classification , Actinomycetaceae/genetics , Actinomycetaceae/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Coculture Techniques/instrumentation , Culture Media/metabolism , Humans , Microbiota , Polymerase Chain Reaction
16.
J Microbiol Methods ; 180: 106108, 2021 01.
Article En | MEDLINE | ID: mdl-33232796

We developed a novel culture medium, referred to FastFung medium as suitable for the culture of clinical fungi, including fastidious ones, for both research and diagnostic studies. It is based on Schædler agar supplemented with many essential components for the growth of fastidious fungi. It also contains selective antibacterial agents for the inhibition of contaminant bacteria growth. In this preliminary study, the FastFung medium was compared to the gold standard Sabouraud medium for 98 fungal and 20 bacterial strains. The fungal strain positive culture rate was 100% vs. 95% and the bacterial strain inhibition was 100% vs. 20%, for the FastFung and Sabouraud media, respectively. When compared to the Sabouraud medium on 120 clinical samples, the FastFung medium displayed both a higher fungal colonies count, and a lower culture contamination rate. Storage at 4 °C for 4 weeks did not alter the FastFung culture medium performances for the six isolates of Candida, Cryptococcus, and Penicillium tested. These encouraging results suggest future development of using the FastFung medium in clinical mycology and in mycobiome characterization. Further prospective evaluation aiming at assessing whether implementing the FastFung medium in the routine workflow simplifies and strengthen fungal isolation capacities in the clinical laboratory is warranted.


Culture Media/chemistry , Fungi/growth & development , Fungi/isolation & purification , Mycology/methods , Agar , Bacteria/isolation & purification , Candida/isolation & purification , Clinical Laboratory Techniques/methods , Cryptococcus/isolation & purification , Genes, rRNA/genetics , Malassezia , Mycobiome , Mycoses/diagnosis , Penicillium/isolation & purification
17.
J Fungi (Basel) ; 6(4)2020 Dec 09.
Article En | MEDLINE | ID: mdl-33316902

Malassezia is a lipid-dependent commensal yeast of the human skin. The different culture media and skin sampling methods used to grow these fastidious yeasts are a source of heterogeneity in culture-based epidemiological study results. This study aimed to compare the performances of three methods of skin sampling, and two culture media for the detection of Malassezia yeasts by culture from the human skin. Three skin sampling methods, namely sterile gauze, dry swab, and TranswabTM with transport medium, were applied on 10 healthy volunteers at 5 distinct body sites. Each sample was further inoculated onto either the novel FastFung medium or the reference Dixon agar for the detection of Malassezia spp. by culture. At least one colony of Malassezia spp. grew on 93/300 (31%) of the cultures, corresponding to 150 samplings. The positive culture rate was 67%, 18%, and 15% (P < 10-3), for samples collected with sterile gauze, TranswabTM, and dry swab, respectively. The positive culture rate was 62% and 38% (P < 0.003) by using the FastFung and the Dixon media, respectively. Our results showed that sterile gauze rubbing skin sampling followed by inoculation on FastFung medium should be implemented in the routine clinical laboratory procedure for Malassezia spp. cultivation.

18.
Arch Microbiol ; 202(5): 1223-1229, 2020 Jul.
Article En | MEDLINE | ID: mdl-32103285

A Gram-negative and facultative anaerobic bacterium, designated strain SN4T, was isolated from the stool sample of an obese Amazonian patient. The new isolate was characterized by the taxonogenomics approach. The strain SN4T was beige-colored, circular and not haemolytic. Cells are rod shaped and motile with several flagella. Strain SN4T grows optimally at pH 7 and can survive in the presence of a saline concentration of up to 75 g/l NaCl. The 16S ribosomal RNA gene sequence analysis of the novel strain SN4T showed 95.28% similarity in nucleotide sequence with Gorillibacterium massiliense G5T, the phylogenetically closest neighbor and the type species of this genus. Anteiso-C15:0, iso-C15:0 and C16:0 were found as the major components in the cellular fatty acid analysis of this isolate. The genomic draft of strain SN4T is 5,263,742 bp long with 53.33% of G+C content. The differences in physiological, biochemical characteristics and phylogenetic and genomic data make it possible to clearly distinguish the strain SN4T from G. massiliense G5T. Based on the taxonogenomic description and the phenotypic and biochemical characteristics of this bacterium presented in this article, we propose the SN4T strain (= CSUR P2011 = DSM 100,698) as a new species, Gorillibacterium timonense sp. nov.


Bacillales/classification , Phylogeny , Bacillales/genetics , Bacillales/isolation & purification , Base Composition , DNA, Bacterial/genetics , Fatty Acids/analysis , Feces/microbiology , Genomics , Humans , Obesity , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity
19.
J Glob Antimicrob Resist ; 21: 314-317, 2020 06.
Article En | MEDLINE | ID: mdl-32004725

OBJECTIVES: The incidence of severe filamentous fungal infections has increased over the past decade. Some of these filamentous fungi are resistant to available antifungals; it is thus urgent to find new compounds that are active against such life-threatening pathogens. METHODS: In this study, 1280 drugs (Prestwick Chemical Library) were tested against six multidrug-resistant (MDR) filamentous fungi, includingAspergillus, Fusarium, Scedosporium/Lomentospora, Rhizopus and Lichtheimia species. RESULTS: Several hits were identified that induced fungal growth inhibition ≥70%. Among the non-antifungal compounds that were effective against the clinical moulds tested in this study, clioquinol, alexidine dihydrochloride, hexachlorophene and thonzonium bromide displayed a broad activity against all strains tested. CONCLUSION: This study enriches the potential antifungal options that can be used against MDR invasive fungal diseases.


Fungi , Pharmaceutical Preparations , Antifungal Agents/pharmacology
20.
Microorganisms ; 7(12)2019 Dec 04.
Article En | MEDLINE | ID: mdl-31817168

Blastocystis is the most common protozoan colonizing the gut of vertebrates. It modulates the human digestive microbiota in the absence of inflammation and gastrointestinal disease. Although it has been associated with human diseases, including inflammatory bowel disease, its pathogenicity remains controversial. This study aimed to assess the influence of Blastocystis on the gut bacterial communities in healthy children. We conducted a cross-sectional study on 147 Blastocystis-colonized and 149 Blastocystis-noncolonized Malian children, with Blastocystis colonization assessed by real-time PCR and gut microbial communities characterized via 16S rRNA gene (Illumina MiSeq) sequencing and bioinformatics analysis. The gut microbiota diversity was higher in Blastocystis-colonized compared to Blastocystis-noncolonized children. The phyla Firmicutes, Elusimicrobia, Lentisphaerae, and Euryarchaeota were higher in Blastocystis-colonized children, whereas Actinobacteria, Proteobacteria, unassigned bacteria, and Deinococcus-Thermus were higher in Blastocystis-noncolonized children. Moreover, Faecalibacterium prausnitzii (family Ruminococcaceae) and Roseburia sp. (family Lachnospiraceae) abundance was higher in Blastocystis-colonized children. We conclude that Blastocystis colonization is significantly associated with a higher diversity of the gut bacterial communities in healthy children, while it is not associated with the presence of potentially pathogenic bacteria in the human gut.

...