Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38845228

RESUMEN

ABSTRACT: Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions; behavioral recovery is typically poor. We used a plasmalemmal fusogen, polyethylene glycol (PEG), to immediately fuse closely apposed open ends of severed proximal and distal axons in rat sciatic nerves. We have previously reported that sciatic nerve axons repaired by PEG- fusion do not undergo Wallerian degeneration, and PEG-fused animals exhibit rapid (within 2-6 weeks) and extensive locomotor recovery. Furthermore, our previous report showed that PEG-fusion of severed sciatic motor axons was non-specific, i.e., spinal motoneurons in PEG- fused animals were found to project to appropriate as well as inappropriate target muscles. In this study, we examined the consequences of PEG-fusion for sensory axons of the sciatic nerve. Young adult male and female rats (Sprague-Dawley) received either a unilateral single cut or ablation injury to the sciatic nerve and subsequent repair with or without (Negative Control) the application of PEG. Compound action potentials recorded immediately after PEG-fusion repair confirmed conduction across the injury site. The success of PEG-fusion was confirmed through Sciatic Functional Index testing with PEG-fused animals showing improvement in locomotor function beginning at 35 days postoperatively. At 2-42 days postoperatively, we anterogradely labeled sensory afferents from the dorsal aspect of the hindpaw following bilateral intradermal injection of wheat germ agglutinin conjugated horseradish peroxidase. PEG-fusion repair reestablished axonal continuity. Compared to unoperated animals, labeled sensory afferents ipsilateral to the injury in PEG-fused animals were found in the appropriate area of the dorsal horn, as well as inappropriate mediolateral and rostrocaudal areas. Unexpectedly, despite having intact peripheral nerves, similar reorganizations of labeled sensory afferents were also observed contralateral to the injury and repair. This central reorganization may contribute to the improved behavioral recovery seen after PEG-fusion repair, supporting the use of this novel repair methodology over currently available treatments.

2.
Neural Regen Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38934383

RESUMEN

ABSTRACT: Successful polyethylene glycol fusion (PEG-fusion) of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to: (1) rapidly restore electrophysiological continuity; (2) prevent distal Wallerian Degeneration and maintain their myelin sheaths; (3) promote primarily motor, voluntary behavioral recoveries as assessed by the Sciatic Functional Index; and, (4) rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex (e.g., toe twitch) or voluntary behaviors. The preceding companion paper describes sensory terminal field reorganization following PEG-fusion repair of sciatic nerve transections or ablations; however, sensory behavioral recovery has not been explicitly explored following PEG-fusion repair. In the current study, we confirmed the success of PEG-fusion surgeries according to criteria (1-3) above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats. Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws. Dorsal von Frey filament test was a more reliable method than plantar von Frey filament test to assess mechanical nociceptive sensitivity following sciatic nerve transections. Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex. Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats. Following sciatic transection, all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury. However, PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats. Furthermore, PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recovery compared with those without Sciatic Functional Index recovery, suggesting a correlation between successful pPEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries. This correlation was independent of the sex or strain of the rat. Furthermore, our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths. No chronic hypersensitivity developed in any rat up to 12 weeks. All these data suggest that PEG-fusion repair of transection peripheral nerve injuries could have important clinical benefits.

3.
Plast Reconstr Surg ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37734115

RESUMEN

BACKGROUND: Polyethylene glycol (PEG) can fuse severed closely-apposed axolemmas and restore axonal continuity. We evaluated the effects of PEG-fusion on functional recovery in a rodent forelimb model of peripheral nerve injury. METHODS: The median nerves of male Lewis rats (n=5 per group) were transected and repaired with standard suture repair (SR), SR with PEG (PEG), or SR with PEG and 1% methylene blue (PEG+MB); a sham surgery group was also included. Proximal stimulation produced compound nerve (CAPS) and muscle (CMAPs) action potentials recorded distally. The contralateral limb of each animal acted as an internal control for grip strength measurements. RESULTS: CAPs and CMAPs immediately returned in all PEG and PEG+MB animals, but not in SR animals. PEG and PEG+MB groups demonstrated earlier return of function by post-operative day (POD) 7 (62.6 ±7.3% and 50.9 ±6.7% of contralateral limb grip strength, respectively) compared to SR group, in which minimal return of function was not measurable until POD 21. At POD 98, the PEG group grip strength recovered to 77.2 ±2.8% while the PEG+MB grip strength recovered to 79.9 ±4.4%, compared to 34.9 ±1.8% recovery in the SR group (p<0.05). The PEG and PEG+MB groups reached 50% of the Sham group grip strength on POD 3.8 and 6.3, respectively, whereas the SR group did not reach 50% grip strength recovery of the Sham group throughout the study period. CONCLUSION: PEG-fusion plus neurorrhaphy with or without methylene blue re-established axonal continuity, shortened recovery time, and augmented functional recovery compared to suture neurorrhaphy alone.

4.
Neural Regen Res ; 18(12): 2564-2568, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37449590

RESUMEN

The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS have been extensively studied and routinely treated with autografts, acellular nerve allografts, conduits, wraps, and nerve transfers. In contrast, segmental-loss peripheral nerve injuries, in which one or more branch points are ablated so that there are three or more nerve endings, present additional complications that have not been rigorously studied or documented. This review discusses: (1) the branched anatomy of the peripheral nervous system, (2) case reports describing how peripheral nerve injuries with branched ablations have been surgically managed, (3) factors known to influence regeneration through branched nerve structures, (4) techniques and models of branched peripheral nerve injuries in animal models, and (5) conclusions regarding outcome measures and studies needed to improve understanding of regeneration through ablated branched structures of the peripheral nervous system.

5.
Front Physiol ; 14: 1114779, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008019

RESUMEN

Neuroscientists and Cell Biologists have known for many decades that eukaryotic cells, including neurons, are surrounded by a plasmalemma/axolemma consisting of a phospholipid bilayer that regulates trans-membrane diffusion of ions (including calcium) and other substances. Cells often incur plasmalemmal damage via traumatic injury and various diseases. If the damaged plasmalemma is not rapidly repaired within minutes, activation of apoptotic pathways by calcium influx often results in cell death. We review publications reporting what is less-well known (and not yet covered in neuroscience or cell biology textbooks): that calcium influx at the lesion sites ranging from small nm-sized holes to complete axonal transection activates parallel biochemical pathways that induce vesicles/membrane-bound structures to migrate and interact to restore original barrier properties and eventual reestablishment of the plasmalemma. We assess the reliability of, and problems with, various measures (e.g., membrane voltage, input resistance, current flow, tracer dyes, confocal microscopy, transmission and scanning electron microscopy) used individually and in combination to assess plasmalemmal sealing in various cell types (e.g., invertebrate giant axons, oocytes, hippocampal and other mammalian neurons). We identify controversies such as plug versus patch hypotheses that attempt to account for currently available data on the subcellular mechanisms of plasmalemmal repair/sealing. We describe current research gaps and potential future developments, such as much more extensive correlations of biochemical/biophysical measures with sub-cellular micromorphology. We compare and contrast naturally occurring sealing with recently-discovered artificially-induced plasmalemmal sealing by polyethylene glycol (PEG) that bypasses all natural pathways for membrane repair. We assess other recent developments such as adaptive membrane responses in neighboring cells following injury to an adjacent cell. Finally, we speculate how a better understanding of the mechanisms involved in natural and artificial plasmalemmal sealing is needed to develop better clinical treatments for muscular dystrophies, stroke and other ischemic conditions, and various cancers.

6.
Neural Regen Res ; 18(9): 2082-2088, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36926735

RESUMEN

Most organ or tissue allografts with viable cells are stored in solutions ex vivo for hours to several days. Most allografts then require rapid host revascularization upon transplantation to maintain donor-cell functions (e.g., cardiac muscle contractions, hepatic secretions). In contrast, peripheral nerve allografts stored ex vivo do not require revascularization to act as scaffolds to guide outgrowth by host axons at 1-2 mm/d, likely aided by viable donor Schwann cells. Using current storage solutions and protocols, axons in all these donor organ/tissue/nerve transplants are expected to rapidly become non-viable due to Wallerian degeneration within days. Therefore, ex vivo storage solutions have not been assessed for preserving normal axonal functions, i.e., conducting action potentials or maintaining myelin sheaths. We hypothesized that most or all organ storage solutions would maintain axonal viability. We examined several common organ/tissue storage solutions (University of Wisconsin Cold Storage Solution, Normosol-R, Normal Saline, and Lactated Ringers) for axonal viability in rat sciatic nerves ex vivo as assessed by maintaining: (1) conduction of artificially-induced compound action potentials; and (2) axonal and myelin morphology in a novel assay method. The ten different storage solution conditions for peripheral nerves with viable axons (PNVAs) differed in their solution composition, osmolarity (250-318 mOsm), temperature (4°C vs. 25°C), and presence of calcium. Compound action potentials and axonal morphology in PNVAs were best maintained for up to 9 days ex vivo in calcium-free hypotonic diluted (250 mOsm) Normosol-R (dNR) at 4°C. Surprisingly, compound action potentials were maintained for only 1-2 days in UW and NS at 4°C, a much shorter duration than PNVAs maintained in 4°C dNR (9 days) or even in 25°C dNR (5 days). Viable axons in peripheral nerve allografts are critical for successful polyethylene glycol (PEG)-fusion of viable proximal and distal ends of host axons with viable donor axons to repair segmental-loss peripheral nerve injuries. PEG-fusion repair using PNVAs prevents Wallerian degeneration of many axons within and distal to the graft and results in excellent recovery of sensory/motor functions and voluntary behaviors within weeks. Such PEG-fused PNVAs, unlike all other types of conventional donor transplants, are immune-tolerated without tissue matching or immune suppression. Preserving axonal viability in stored PNVAs would enable the establishment of PNVA tissue banks to address the current shortage of transplantable nerve grafts and the use of stored PEG-fused PNVAs to repair segmental-loss peripheral nerve injuries. Furthermore, PNVA storage solutions may enable the optimization of ex vivo storage solutions to maintain axons in other types of organ/tissue transplants.

7.
J Neuroinflammation ; 19(1): 60, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35227261

RESUMEN

We review data showing that peripheral nerve injuries (PNIs) that involve the loss of a nerve segment are the most common type of traumatic injury to nervous systems. Segmental-loss PNIs have a poor prognosis compared to other injuries, especially when one or more mixed motor/sensory nerves are involved and are typically the major source of disability associated with extremities that have sustained other injuries. Relatively little progress has been made, since the treatment of segmental loss PNIs with cable autografts that are currently the gold standard for repair has slow and incomplete (often non-existent) functional recovery. Viable peripheral nerve allografts (PNAs) to repair segmental-loss PNIs have not been experimentally or clinically useful due to their immunological rejection, Wallerian degeneration (WD) of anucleate donor graft and distal host axons, and slow regeneration of host axons, leading to delayed re-innervation and producing atrophy or degeneration of distal target tissues. However, two significant advances have recently been made using viable PNAs to repair segmental-loss PNIs: (1) hydrogel release of Treg cells that reduce the immunological response and (2) PEG-fusion of donor PNAs that reduce the immune response, reduce and/or suppress much WD, immediately restore axonal conduction across the donor graft and re-innervate many target tissues, and restore much voluntary behavioral functions within weeks, sometimes to levels approaching that of uninjured nerves. We review the rather sparse cellular/biochemical data for rejection of conventional PNAs and their acceptance following Treg hydrogel and PEG-fusion of PNAs, as well as cellular and systemic data for their acceptance and remarkable behavioral recovery in the absence of tissue matching or immune suppression. We also review typical and atypical characteristics of PNAs compared with other types of tissue or organ allografts, problems and potential solutions for PNA use and storage, clinical implications and commercial availability of PNAs, and future possibilities for PNAs to repair segmental-loss PNIs.


Asunto(s)
Traumatismos de los Nervios Periféricos , Polietilenglicoles , Aloinjertos/fisiología , Axones/patología , Humanos , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/patología , Nervio Ciático/patología , Trasplante Homólogo , Degeneración Walleriana/patología
8.
Neural Regen Res ; 17(4): 721-727, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34472457

RESUMEN

This review addresses the accumulating evidence that live (not decellularized) allogeneic peripheral nerves are functionally and immunologically peculiar in comparison with many other transplanted allogeneic tissues. This is relevant because live peripheral nerve allografts are very effective at promoting recovery after segmental peripheral nerve injury via axonal regeneration and axon fusion. Understanding the immunological peculiarities of peripheral nerve allografts may also be of interest to the field of transplantation in general. Three topics are addressed: The first discusses peripheral nerve injury and the potential utility of peripheral nerve allografts for bridging segmental peripheral nerve defects via axon fusion and axon regeneration. The second reviews evidence that peripheral nerve allografts elicit a more gradual and less severe host immune response allowing for prolonged survival and function of allogeneic peripheral nerve cells and structures. Lastly, potential mechanisms that may account for the immunological differences of peripheral nerve allografts are discussed.

9.
Front Cell Neurosci ; 16: 1087961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36744063

RESUMEN

Peripheral nerve injuries (PNIs) that consist of simple nerve severance often result in severe motor impairment and permanent loss of function. Such patients face significant costs and pose major burdens to healthcare systems. Currently, the most promising surgical technique to achieve the best clinical outcome after such PNIs is immediate primary coaptation of severed nerve ends by microsutures (neurorrhaphy). However, recovery is often poor and delayed for many months due to Wallerian degeneration (WD) and slow (1-2 mm/day) axonal outgrowths from severed proximal axons that may not properly reinnervate denervated afferent/efferent targets that have atrophied. In contrast, recent pre-clinical studies using polyethylene glycol (PEG) to facilitate primary nerve repair have greatly improved the rate and extent of sensory and motor recovery and prevented much WD and muscle atrophy. That is, PEG-fused axons rapidly establish proximal-distal axoplasmic/axolemmal continuity, which do not undergo WD and maintain the structure and function of neuromuscular junction (NMJ). PEG-fused axons rapidly reinnervate denervated NMJs, thereby preventing muscle atrophy associated with monthslong denervation due to slowly regenerating axonal outgrowths. We now describe PEG-mediated fusion repair of a digital nerve in each of two patients presenting with a digital laceration resulting in total loss of sensation. The first patient's tactile perception improved markedly at 3 days postoperatively (PO). Two-point discrimination improved from greater than 10 mm at initial presentation to 4 mm at 11-week PO, and the Semmes-Weinstein monofilament score improved from greater than 6.65 to 2.83 mm, a near-normal level. The second patient had severe PO edema and scar development requiring a hand compression glove and scar massage, which began improving at 11-week PO. The sensory function then improved for 4 months PO, with both two-point discrimination and Semmes-Weinstein scores approaching near-normal levels at the final follow-up. These case study data are consistent with data from animal models. All these data suggest that PEG-fusion technologies could produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation PNIs with autografts, anucleated nerve allografts, or conduits in which the patient outcome is solely dependent upon axon regeneration over months or years.

10.
Neural Regen Res ; 16(10): 2056-2063, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33642394

RESUMEN

Complete transection of peripheral mixed nerves immediately produces loss of sensory perception, muscle contractions and voluntary behavior mediated by the severed distal axons. In contrast to natural regeneration (~1 mm/d) of proximal axons that may eventually reinnervate denervated targets, re-innervation is restored within minutes by PEG-fusion that consists of neurorrhaphy and a sequence of well specified hypo- and isotonic calcium-free or calcium-containing solutions, the anti-oxidant methylene blue (MB) and the membrane fusogen polyethylene glycol (PEG). In this study, we examined the relative efficacy of PEG-fusion with no MB (0%), 0.5% MB, or 1% MB on the recovery of voluntary behaviors by female Sprague-Dawley rats with a complete mid-thigh severance of their sciatic nerve bathed in extracellular fluid or calcium-containing isotonic saline. The recovery of voluntary behaviors is the most relevant measure of success of any technique to repair peripheral nerve injuries. We assessed recovery by the sciatic functional index, a commonly used measure of voluntary hindlimb behaviors following complete sciatic transections. We reported that both 1% MB and 0.5% MB in sterile distilled water in our PEG-fusion protocol with neurorrhaphy significantly increased the rate and extent of behavioral recovery compared to PEG plus neurorrhaphy alone. Furthermore, 0.5% MB was as effective as 1% MB in voluntary behavioral recovery as assessed by the sciatic functional index. Since sterile 1% MB is no longer clinically available, we therefore recommend that 0.5% MB be included in upcoming human clinical trials to evaluate the safety and efficacy of PEG-fusion. All animal procedures were approved by the University of Texas Institutional Animal Care and Use Committee (AUP-2019-00225) on September 9, 2020.

11.
J Neuroinflammation ; 17(1): 287, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33008419

RESUMEN

BACKGROUND: Current methods to repair ablation-type peripheral nerve injuries (PNIs) using peripheral nerve allografts (PNAs) often result in poor functional recovery due to immunological rejection as well as to slow and inaccurate outgrowth of regenerating axonal sprouts. In contrast, ablation-type PNIs repaired by PNAs, using a multistep protocol in which one step employs the membrane fusogen polyethylene glycol (PEG), permanently restore sciatic-mediated behaviors within weeks. Axons and cells within PEG-fused PNAs remain viable, even though outbred host and donor tissues are neither immunosuppressed nor tissue matched. PEG-fused PNAs exhibit significantly reduced T cell and macrophage infiltration, expression of major histocompatibility complex I/II and consistently low apoptosis. In this study, we analyzed the coding transcriptome of PEG-fused PNAs to examine possible mechanisms underlying immunosuppression. METHODS: Ablation-type sciatic PNIs in adult Sprague-Dawley rats were repaired using PNAs and a PEG-fusion protocol combined with neurorrhaphy. Electrophysiological and behavioral tests confirmed successful PEG-fusion of PNAs. RNA sequencing analyzed differential expression profiles of protein-coding genes between PEG-fused PNAs and negative control PNAs (not treated with PEG) at 14 days PO, along with unoperated control nerves. Sequencing results were validated by quantitative reverse transcription PCR (RT-qPCR), and in some cases, immunohistochemistry. RESULTS: PEG-fused PNAs display significant downregulation of many gene transcripts associated with innate and adaptive allorejection responses. Schwann cell-associated transcripts are often upregulated, and cellular processes such as extracellular matrix remodeling and cell/tissue development are particularly enriched. Transcripts encoding several potentially immunosuppressive proteins (e.g., thrombospondins 1 and 2) also are upregulated in PEG-fused PNAs. CONCLUSIONS: This study is the first to characterize the coding transcriptome of PEG-fused PNAs and to identify possible links between alterations of the extracellular matrix and suppression of the allorejection response. The results establish an initial molecular basis to understand mechanisms underlying PEG-mediated immunosuppression.


Asunto(s)
Aloinjertos/fisiología , Perfilación de la Expresión Génica/métodos , Tolerancia Inmunológica/fisiología , Polietilenglicoles/administración & dosificación , Nervio Ciático/fisiología , Nervio Ciático/trasplante , Animales , Femenino , Mapas de Interacción de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley
12.
J Neurosci Res ; 98(12): 2468-2495, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32931034

RESUMEN

Ablation/segmental loss peripheral nerve injuries (PNIs) exhibit poor functional recovery due to slow and inaccurate outgrowth of regenerating axons. Viable peripheral nerve allografts (PNAs) as growth-guide conduits are immunologically rejected and all anucleated donor/host axonal segments undergo Wallerian degeneration. In contrast, we report that ablation-type sciatic PNIs repaired by neurorrhaphy of viable sciatic PNAs and a polyethylene glycol (PEG)-fusion protocol using PEG immediately restored axonal continuity for many axons, reinnervated/maintained their neuromuscular junctions, and prevented much Wallerian degeneration. PEG-fused PNAs permanently restored many sciatic-mediated behaviors within 2-6 weeks. PEG-fused PNAs were not rejected even though host/donors were neither immunosuppressed nor tissue-matched in outbred female Sprague Dawley rats. Innate and adaptive immune responses to PEG-fused sciatic PNAs were analyzed using electron microscopy, immunohistochemistry, and quantitative reverse transcription polymerase chain reaction for morphological features, T cell and macrophage infiltration, major histocompatibility complex (MHC) expression, apoptosis, expression of cytokines, chemokines, and cytotoxic effectors. PEG-fused PNAs exhibited attenuated innate and adaptive immune responses by 14-21 days postoperatively, as evidenced by (a) many axons and cells remaining viable, (b) significantly reduced infiltration of cytotoxic and total T cells and macrophages, (c) significantly reduced expression of inflammatory cytokines, chemokines, and MHC proteins, (d) consistently low apoptotic response. Morphologically and/or biochemically, PEG-fused sciatic PNAs often resembled sciatic autografts or intact sciatic nerves. In brief, PEG-fused PNAs are an unstudied, perhaps unique, example of immune tolerance of viable allograft tissue in a nonimmune-privileged environment and could greatly improve the clinical outcomes for PNIs relative to current protocols.


Asunto(s)
Inmunidad Adaptativa/fisiología , Inmunidad Innata/fisiología , Polietilenglicoles/administración & dosificación , Nervio Ciático/inmunología , Nervio Ciático/trasplante , Neuropatía Ciática/terapia , Inmunidad Adaptativa/efectos de los fármacos , Aloinjertos/inmunología , Aloinjertos/trasplante , Animales , Femenino , Inmunidad Innata/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Neuropatía Ciática/inmunología , Trasplante Homólogo/métodos
13.
Curr Top Membr ; 84: 129-167, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31610860

RESUMEN

Eukaryotic tissues are composed of individual cells surrounded by a plasmalemma that consists of a phospholipid bilayer with hydrophobic heads that bind cell water. Bound-water creates a thermodynamic barrier that impedes the fusion of a plasmalemma with other membrane-bound intracellular structures or with the plasmalemma of adjacent cells. Plasmalemmal damage consisting of small or large holes or complete transections of a cell or axon results in calcium influx at the lesion site. Calcium activates fusogenic pathways that have been phylogenetically conserved and that lower thermodynamic barriers for fusion of membrane-bound structures. Calcium influx also activates phylogenetically conserved sealing mechanisms that mobilize the gradual accumulation and fusion of vesicles/membrane-bound structures that seal the damaged membrane. These naturally occurring sealing mechanisms for different cells vary based on the type of lesion, the type of cell, the proximity of intracellular membranous structures to the lesion and the relation to adjacent cells. The reliability of different measures to assess plasmalemmal sealing need be carefully considered for each cell type. Polyethylene glycol (PEG) bypasses calcium and naturally occurring fusogenic pathways to artificially fuse adjacent cells (PEG-fusion) or artificially seal transected axons (PEG-sealing). PEG-fusion techniques can also be used to rapidly rejoin the closely apposed, open ends of severed axons. PEG-fused axons do not (Wallerian) degenerate and PEG-fused nerve allografts are not immune-rejected, and enable behavioral recoveries not observed for any other clinical treatment. A better understanding of natural and artificial mechanisms that induce membrane fusion should provide better clinical treatment for many disorders involving plasmalemmal damage.


Asunto(s)
Membrana Celular/efectos de los fármacos , Membrana Celular/patología , Eucariontes/efectos de los fármacos , Polietilenglicoles/farmacología , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Membrana Celular/metabolismo , Difusión , Eucariontes/citología , Eucariontes/metabolismo , Humanos
14.
PLoS One ; 14(10): e0223443, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31584985

RESUMEN

Polyethylene glycol repair (PEG-fusion) of severed sciatic axons restores their axoplasmic and membrane continuity, prevents Wallerian degeneration, maintains muscle fiber innervation, and greatly improves recovery of voluntary behaviors. We examined alterations in spinal connectivity and motoneuron dendritic morphology as one potential mechanism for improved behavioral function after PEG-fusion. At 2-112 days after a single-cut or allograft PEG-fusion repair of transected or ablated sciatic nerves, the number, size, location, and morphology of motoneurons projecting to the tibialis anterior muscle were assessed by retrograde labeling. For both lesion types, labeled motoneurons were found in the appropriate original spinal segment, but also in inappropriate segments, indicating mis-pairings of proximal-distal segments of PEG-fused motor axons. Although the number and somal size of motoneurons was unaffected, dendritic distributions were altered, indicating that PEG-fusion preserves spinal motoneurons but reorganizes their connectivity. This spinal reorganization may contribute to the remarkable behavioral recovery seen after PEG-fusion repair.


Asunto(s)
Neuronas Motoras/metabolismo , Conducción Nerviosa , Neuropatía Ciática/etiología , Neuropatía Ciática/metabolismo , Potenciales de Acción , Aloinjertos , Animales , Recuento de Células , Dendritas/metabolismo , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Femenino , Inmunohistoquímica , Neuronas Motoras/citología , Regeneración Nerviosa , Polietilenglicoles , Ratas , Recuperación de la Función , Neuropatía Ciática/rehabilitación
16.
J Neurosci Methods ; 314: 1-12, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30586569

RESUMEN

BACKGROUND: Nervous system injuries in mammals often involve transection or segmental loss of peripheral nerves. Such injuries result in functional (behavioral) deficits poorly restored by naturally occurring 1-2 mm/d axonal outgrowths aided by primary repair or reconstruction. "Neurorrhaphy" or nerve repair joins severed connective tissues, but not severed cytoplasmic/plasmalemmal extensions (axons) within the tissue. NEW METHOD: PEG-fusion consists of neurorrhaphy combined with a well-defined sequence of four pharmaceutical agents in solution, one containing polyethylene glycol (PEG), applied directly to closely apposed viable ends of severed axons. RESULTS: PEG-fusion of rat sciatic nerves: (1) restores axonal continuity across coaptation site(s) within minutes, (2) prevents Wallerian degeneration of many distal severed axons, (3) preserves neuromuscular junctions, (4) prevents target muscle atrophy, (5) produces rapid and improved recovery of voluntary behaviors compared with neurorrhaphy alone, and (6) PEG-fused allografts are not rejected, despite no tissue-matching nor immunosuppression. COMPARISON WITH EXISTING METHODS: If PEG-fusion protocols are not correctly executed, the results are similar to that of neurorrhaphy alone: (1) axonal continuity across coaptation site(s) is not re-established, (2) Wallerian degeneration of all distal severed axons rapidly occurs, (3) neuromuscular junctions are non-functional, (4) target muscle atrophy begins within weeks, (5) recovery of voluntary behavior occurs, if ever, after months to levels well-below that observed in unoperated animals, and (6) allografts are either rejected or not well-accepted. CONCLUSION: PEG-fusion produces rapid and dramatic recovery of function following rat peripheral nerve injuries.


Asunto(s)
Fármacos Neuroprotectores/farmacología , Procedimientos Neuroquirúrgicos , Polietilenglicoles/farmacología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones , Aloinjertos , Animales , Axones/efectos de los fármacos , Axones/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Unión Neuromuscular/patología , Procedimientos Neuroquirúrgicos/métodos , Distribución Aleatoria , Ratas Sprague-Dawley , Nervio Ciático/patología , Técnicas de Sutura , Degeneración Walleriana/prevención & control
19.
J Neurosci Res ; 96(7): 1243-1264, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29659046

RESUMEN

Many publications report that ablations of segments of peripheral nerves produce the following unfortunate results: (1) Immediate loss of sensory signaling and motor control; (2) rapid Wallerian degeneration of severed distal axons within days; (3) muscle atrophy within weeks; (4) poor behavioral (functional) recovery after many months, if ever, by slowly-regenerating (∼1mm/d) axon outgrowths from surviving proximal nerve stumps; and (5) Nerve allografts to repair gap injuries are rejected, often even if tissue matched and immunosuppressed. In contrast, using a female rat sciatic nerve model system, we report that neurorrhaphy of allografts plus a well-specified-sequence of solutions (one containing polyethylene glycol: PEG) successfully addresses each of these problems by: (a) Reestablishing axonal continuity/signaling within minutes by nonspecific ally PEG-fusing (connecting) severed motor and sensory axons across each anastomosis; (b) preventing Wallerian degeneration by maintaining many distal segments of inappropriately-reconnected, PEG-fused axons that continuously activate nerve-muscle junctions; (c) maintaining innervation of muscle fibers that undergo much less atrophy than otherwise-denervated muscle fibers; (d) inducing remarkable behavioral recovery to near-unoperated levels within days to weeks, almost certainly by CNS and PNS plasticities well-beyond what most neuroscientists currently imagine; and (e) preventing rejection of PEG-fused donor nerve allografts with no tissue matching or immunosuppression. Similar behavioral results are produced by PEG-fused autografts. All results for Negative Control allografts agree with current neuroscience data 1-5 given above. Hence, PEG-fusion of allografts for repair of ablated peripheral nerve segments expand on previous observations in single-cut injuries, provoke reconsideration of some current neuroscience dogma, and further extend the potential of PEG-fusion in clinical practice.


Asunto(s)
Regeneración Nerviosa/efectos de los fármacos , Nervio Peroneo/efectos de los fármacos , Nervio Peroneo/trasplante , Polietilenglicoles/farmacología , Nervio Ciático/efectos de los fármacos , Neuropatía Ciática/terapia , Aloinjertos/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Axones/fisiología , Axotomía , Modelos Animales de Enfermedad , Femenino , Músculo Esquelético , Fibras Nerviosas/efectos de los fármacos , Conducción Nerviosa/efectos de los fármacos , Unión Neuromuscular/efectos de los fármacos , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/terapia , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Nervio Ciático/patología , Nervio Ciático/fisiología , Nervio Ciático/cirugía , Neuropatía Ciática/inducido químicamente , Trasplante Homólogo , Degeneración Walleriana/prevención & control
20.
J Neurosci Res ; 96(7): 1223-1242, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29659058

RESUMEN

Complete severance of major peripheral mixed sensory-motor nerve proximally in a mammalian limb produces immediate loss of action potential conduction and voluntary behaviors mediated by the severed distal axonal segments. These severed distal segments undergo Wallerian degeneration within days. Denervated muscles atrophy within weeks. Slowly regenerating (∼1 mm/day) outgrowths from surviving proximal stumps that often nonspecifically reinnervate denervated targets produce poor, if any, restoration of lost voluntary behaviors. In contrast, in this study using completely transected female rat sciatic axons as a model system, we provide extensive morphometric, immunohistochemical, electrophysiological, and behavioral data to show that these adverse outcomes are avoided by microsuturing closely apposed axonal cut ends (neurorrhaphy) and applying a sequence of well-specified solutions, one of which contains polyethylene glycol (PEG). This "PEG-fusion" procedure within minutes reestablishes axoplasmic and axolemmal continuity and signaling by nonspecifically fusing (connecting) closely apposed open ends of severed motor and/or sensory axons at the lesion site. These PEG-fused axons continue to conduct action potentials and generate muscle action potentials and muscle twitches for months and do not undergo Wallerian degeneration. Continuously innervated muscle fibers undergo much less atrophy compared with denervated muscle fibers. Dramatic behavioral recovery to near-unoperated levels occurs within days to weeks, almost certainly by activating many central nervous system and peripheral nervous system synaptic and other plasticities, some perhaps to a greater extent than most neuroscientists would expect. Negative control transections in which neurorrhaphy and all solutions except the PEG-containing solution are applied produce none of these remarkably fortuitous outcomes observed for PEG-fusion.


Asunto(s)
Axones/efectos de los fármacos , Axones/fisiología , Regeneración Nerviosa/efectos de los fármacos , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Polietilenglicoles/farmacología , Nervio Ciático/efectos de los fármacos , Animales , Axotomía , Modelos Animales de Enfermedad , Femenino , Regeneración Nerviosa/fisiología , Conducción Nerviosa/efectos de los fármacos , Ratas , Recuperación de la Función , Nervio Ciático/fisiología , Nervio Ciático/cirugía , Neuropatía Ciática/inducido químicamente , Neuropatía Ciática/tratamiento farmacológico , Neuropatía Ciática/patología , Degeneración Walleriana/tratamiento farmacológico , Degeneración Walleriana/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...