Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(31): 22393-22402, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39010927

RESUMEN

3D printing of water stable proteins with elastic properties offers a broad range of applications including self-powered biomedical devices driven by piezoelectric biomaterials. Here, we present a study on water-soluble silk fibroin (SF) films. These films were prepared by mixing degummed silk fibers and calcium chloride (CaCl2) in formic acid, resulting in a silk I-like conformation, which was then converted into silk II by redissolving in phosphate buffer (PBS). Circular dichroism, Raman and infrared (IR) spectroscopies were used to investigate the transitions of secondary structure in silk I and silk II as the pH of the solvent and the sonication time were changed. We showed that a solvent with low pH (e.g. 4) maintains the silk I ß-turn structure; in contrast solvent with higher pH (e.g. 7.4) promotes ß-sheet features of silk II. Ultrasonic treatment facilitates the transition to water stable silk II only for the SF redissolved in PBS. SF from pH 7.4 solution has been printed using extrusion-based 3D printing. A self-powered memristor was realized, comprising an SF-based electric generator and an SF 3D-printed memristive unit connected in series. By exploiting the piezoelectric properties of silk II with higher ß-sheet content and Ca2+ ion transport phenomena, the application of an input voltage driven by a SF generator to SF 3D printed holey structures induces a variation from an initial low resistance state (LRS) to a high resistance state (HRS) that recovers in a few minutes, mimicking the transient memory, also known as short-term memory. Thanks to this holistic approach, these findings can contribute to the development of self-powered neuromorphic networks based on biomaterials with memory capabilities.

2.
ACS Omega ; 9(16): 17977-17988, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38680339

RESUMEN

Despite the technological importance of semiconductor black phosphorus (BP) in materials science, maintaining the stability of BP crystals in organic media and protecting them from environmental oxidation remains challenging. In this study, we present the synthesis of bulk BP and the exploitation of the viscoelastic properties of a regenerated silk fibroin (SF) film as a biocompatible substrate to transfer BP flakes, thereby preventing oxidation. A model based on the flow of polymers revealed that the applied flow-induced stresses exceed the yield stress of the BP aggregate. Raman spectroscopy was used to investigate the exfoliation efficiency as well as the environmental stability of BP transferred on the SF substrate. Notably, BP flakes transferred to the SF substrate demonstrated improved stability when SF was dissolved in a phosphate-buffered saline medium, and in vitro cancer cell viability experiments demonstrate the tumor ablation efficiency under visible to near-infrared (Vis-nIR) radiation. Moreover, the SF and BP-enriched SF (SF/BP) solution was shown to be processable via extrusion-based three-dimensional (3D) printing. Therefore, this work paves the way for a general method for the transferring of BP on natural biodegradable polymers and processing them via 3D printing toward novel functionalities and complex shapes for biomedical purposes.

3.
Materials (Basel) ; 16(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37895643

RESUMEN

Four-dimensional (4D) printing is an innovative additive manufacturing technology used to fabricate structures that can evolve over time when exposed to a predefined environmental stimulus. 4D printed objects are no longer static objects but programmable active structures that accomplish their functions thanks to a change over time in their physical/chemical properties that usually displays macroscopically as a shapeshifting in response to an external stimulus. 4D printing is characterized by several entangled features (e.g., involved material(s), structure geometry, and applied stimulus entities) that need to be carefully coupled to obtain a favorable fabrication and a functioning structure. Overall, the integration of micro-/nanofabrication methods of biomaterials with nanomaterials represents a promising approach for the development of advanced materials. The ability to construct complex and multifunctional triggerable structures capable of being activated allows for the control of biomedical device activity, reducing the need for invasive interventions. Such advancements provide new tools to biomedical engineers and clinicians to design dynamically actuated implantable devices. In this context, the aim of this review is to demonstrate the potential of 4D printing as an enabling manufacturing technology to code the environmentally triggered physical evolution of structures and devices of biomedical interest.

4.
Int J Mol Sci ; 21(22)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202571

RESUMEN

Hybrid nanomaterials fabricated by the heterogeneous integration of 1D (carbon nanotubes) and 2D (graphene oxide) nanomaterials showed synergy in electrical and mechanical properties. Here, we reported the infiltration of carboxylic functionalized single-walled carbon nanotubes (C-SWNT) into free-standing graphene oxide (GO) paper for better electrical and mechanical properties than native GO. The stacking arrangement of GO sheets and its alteration in the presence of C-SWNT were comprehensively explored through scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. The C-SWNTs bridges between different GO sheets produce a pathway for the flow of electrical charges and provide a tougher hybrid system. The nanoscopic surface potential map reveals a higher work function of the individual functionalised SWNTs than surrounded GO sheets showing efficient charge exchange. We observed the enhanced conductivity up to 50 times and capacitance up to 3.5 times of the hybrid structure than the GO-paper. The laminate of polystyrene composites provided higher elastic modulus and mechanical strength when hybrid paper is used, thus paving the way for the exploitation of hybrid filler formulation in designing polymer composites.


Asunto(s)
Conductividad Eléctrica , Grafito/química , Nanotubos de Carbono/química , Papel , Poliestirenos/química
5.
Polymers (Basel) ; 12(7)2020 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-32708367

RESUMEN

From the global spread of COVID-19 we learned that SARS-CoV-2 virus can be transmitted via respiratory liquid droplets. In this study, we performed first-principles calculations suggesting that water molecules once in contact with the graphene oxide (GO) layer interact with its functional groups, therefore, developing an electric field induced by the heterostructure formation. Experiments on GO polymer composite film supports the theoretical findings, showing that the interaction with water aerosol generates a voltage output signal of up to -2 V. We then developed an electrostatic composite fiber by the coagulation method mixing GO with poly(methyl methacrylate) (PMMA). These findings could be used to design protective fabrics with antiviral activity against negatively charged spike proteins of airborne viruses.

6.
Nanomaterials (Basel) ; 10(1)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968575

RESUMEN

Manual and mechanical suturing are currently the gold standard for bowel anastomosis. If tissue approximation fails, anastomotic leaks occur. Anastomotic leaks may have catastrophic consequences. The development of a fully absorbable, biocompatible sealant material based on a bio-ink silk fibroin can reduce the chance of anastomotic leaks. We have produced a Ca-modified plasticised regenerated silk (RS) with gold nanorods sealant. This sealant was applied to anastomosed porcine intestine. Water absorption from wet tissue substrate applied compressive strains on hybrid RS films. This compression results in a sealant effect on anastomosis. The increased toughness of the hybrid plasticised RS resulted in the designing of a bio-film with superior elongation at break (i.e., ≈200%) and bursting pressure. We have also reported structure-dependent piezoelectricity of the RS film that shows a piezoelectric effect out of the plane. We hope that in the future, bowel anastomosis can be simplified by providing a multifunctional bio-film that makes feasible the mechanical tissue joint without the need for specific tools and could be used in piezoelectric sealant heads.

7.
Materials (Basel) ; 12(17)2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480253

RESUMEN

Wet spinning of polyacrylonitrile/carbon nanotubes (PAN/CNT) composite fibers was studied and the effect of spinning conditions on structure and properties of as-spun fibers influenced by the presence of CNTs investigated. Unlike PAN fibers, shear force had a larger effect on crystalline structure and physical and mechanical properties of PAN/CNT composite fibers compared to the elongational force inside a coagulation bath. Under shear force CNTs induced nucleation of new crystals, whereas under elongational force nucleation of new crystals were hindered but the already formed crystals grew bigger. To our knowledge, this key effect has not been reported elsewhere. At different shear rates, strength, Young's modulus and strain at break of PAN/CNT as-spun fibers were improved up to 20% compared to PAN fibers. Application of jet stretch had less influence on physical and mechanical properties of PAN/CNT fibers compared to PAN fibers. However, the improvement of interphase between polymer chains and CNTs as a result of chain orientation may have contributed to enhancement of Young's modulus of jet stretched composite fibers.

8.
Nanomaterials (Basel) ; 8(7)2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29997336

RESUMEN

Regenerated silk (RS) is a protein-based "biopolymer" that enables the design of new materials; here, we called "bionic" the process of regenerated silk production by a fermentation-assisted method. Based on yeast's fermentation, here we produced a living hybrid composite made of regenerated silk nanofibrils and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, by fermentation of such microorganisms at room temperature in a dissolution bath of silkworm silk fibers. The fermentation-based processing enhances the beta-sheet content of the RS, corresponding to a reduction in water permeability and CO2 diffusion through RS/yeast thin films enabling the fabrication of a mechanically robust film that enhances food storage durability. Finally, a transfer print method, which consists of transferring RS and RS/yeast film layers onto a self-adherent paraffin substrate, was used for the realization of heat-responsive wrinkles by exploiting the high thermal expansion of the paraffin substrate that regulates the applied strain, resulting in a switchable coating morphology from the wrinkle-free state to a wrinkled state if the food temperature overcomes a designed threshold. We envision that such efficient and smart coatings can be applied for the realization of smart packaging that, through such a temperature-sensing mechanism, can be used to control food storage conditions.

9.
RSC Adv ; 8(17): 9063-9069, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35541884

RESUMEN

In this study, we present a simple method to prepare and control the structure of regenerated hybrid silkworm silk films through icing. A regenerated hybrid silk (RHS) film consisting of a micro-fibrillar structure was obtained by partially dissolving amino-functionalized polyhedral oligomeric silsesquioxanes (POSS) and silk fibers in a CaCl2-formic acid solution. After immersion in water and icing, the obtained films of RHS showed polymorphic and strain-stiffening behaviors with mechanical properties that were better than those observed in dry or wet-regenerated silk. It was also found that POSS endowed the burning regenerated silk film with anti-dripping properties. The higher ß-sheet content observed in the ice-regenerated hybrid micro-fibrils indicates a useful route to fabricate regenerated silk with physical and functional properties, i.e. strain-stiffening, similar to those observed to date in natural spider silk counterpart and synthetic rubbers, and anti-dripping of the flaming melt. Related carbon nanotube composites are considered for comparison.

10.
ACS Appl Mater Interfaces ; 5(9): 3770-5, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23586813

RESUMEN

In this work we introduce a simple practical way to transfer large flakes of partially reduced graphene oxide (rGO) as well as poly(methyl methacrylate)/rGO films onto arbitrary substrates where the electrode geometry is defined before the film deposition to fabricate devices. It was reported how such films when stimulated by an ultrasound transducer convert mechanical energy to electricity. The possibility to utilize polymer nanocomposites as nanogenerators is of current interest to enhance mechanical energy harvesting and to add new functionalities to polymer nanocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA