Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Psychiatry Res ; 306: 114237, 2021 12.
Article En | MEDLINE | ID: mdl-34655926

The direct effect of genetic variations on clinical phenotypes within schizophrenia (SZ) remains elusive. We examined the previously identified association of reduced gray matter concentration in the insula - medial prefrontal cortex and a quantitative trait locus located in 12q24 in a SZ dataset. The main analysis was performed on 1461 SNPs and 830 participants. The highest contributing SNPs were localized in five genes including TMEM119, which encodes a microglial marker, that is associated with neuroinflammation and Alzheimer's disease. The gene set in 12q4 may partially explain brain alterations in SZ, but they may also relate to other psychiatric and developmental disorders.


Schizophrenia , Brain , Cognition , Gray Matter , Humans , Magnetic Resonance Imaging , Prefrontal Cortex/diagnostic imaging , Schizophrenia/diagnostic imaging , Schizophrenia/genetics
2.
Front Genet ; 6: 147, 2015.
Article En | MEDLINE | ID: mdl-25941532

BACKGROUND: A single nucleotide polymorphism (SNP) within MIR137, the host gene for miR-137, has been identified repeatedly as a risk factor for schizophrenia. Previous genetic pathway analyses suggest that potential targets of this microRNA (miRNA) are also highly enriched in schizophrenia-relevant biological pathways, including those involved in nervous system development and function. METHODS: In this study, we evaluated the schizophrenia risk of miR-137 target genes within these pathways. Gene set enrichment analysis of pathway-specific miR-137 targets was performed using the stage 1 (21,856 subjects) schizophrenia genome wide association study data from the Psychiatric Genomics Consortium and a small independent replication cohort (244 subjects) from the Mind Clinical Imaging Consortium and Northwestern University. RESULTS: Gene sets of potential miR-137 targets were enriched with variants associated with schizophrenia risk, including target sets involved in axonal guidance signaling, Ephrin receptor signaling, long-term potentiation, PKA signaling, and Sertoli cell junction signaling. The schizophrenia-risk association of SNPs in PKA signaling targets was replicated in the second independent cohort. CONCLUSIONS: These results suggest that these biological pathways may be involved in the mechanisms by which this MIR137 variant enhances schizophrenia risk. SNPs in targets and the miRNA host gene may collectively lead to dysregulation of target expression and aberrant functioning of such implicated pathways. Pathway-guided gene set enrichment analyses should be useful in evaluating the impact of other miRNAs and target genes in different diseases.

...