Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 19(14): 2594-2604, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36947412

RESUMEN

Blends of block copolymers can form phases and exhibit features distinct from the constituent materials. We study thin film blends of cylinder-forming and lamellar-forming block copolymers across a range of substrate surface energies. Blend materials are responsive to interfacial energy, allowing selection of pure or coexisting phases based on surface chemistry. Blending stabilizes certain motifs that are typically metastable, and can be used to generate pure hexagonally perforated lamellar thin films across a range of film thicknesses and surface energies. This tolerant behavior is ascribed to the ability of blend materials to redistribute chains to stabilize otherwise high-energy defect structures. The blend responsiveness allows the morphology to be spatially defined through multi-tone chemical surface patterns.

2.
Nano Lett ; 22(12): 4905-4911, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35687074

RESUMEN

Structural evolutions are crucial for determining the performance of high-voltage lithium, manganese-rich layered cathodes. Moreover, interface between electrode and electrolyte plays a critical role in governing ionic transfer in all-solid-state batteries. Here, we unveil two different types of porous structure in Li1.2Ni0.2Mn0.6O2 cathode with LiPON solid-state electrolyte. Nanopores are found near the cathode/electrolyte interface at pristine state, where cation mixing, phase transformation, oxygen loss, and Mn reduction are also found. In situ Li+ extraction induces the evolution of nanovoids, initially formed near the interface then propagated into the bulk. Despite the development of nanovoids, layered structure is conserved, suggesting the nature of nanopores and nanovoids are different and their impact would be divergent. This work demonstrates the intrinsic interfacial layer, as well as the dynamic scenario of nanovoid formation inside high-capacity layered cathode, which helps to understand the performance fading in cathodes and offers insight into the all-solid-state battery design.

3.
Sci Rep ; 11(1): 2358, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504921

RESUMEN

We present a new method for thin-film synthesis of the superconducting A15 phase of vanadium silicide with critical temperature higher than 13 K. Interdiffusion between a metallic vanadium film and the underlying silicon device layer in a silicon-on-insulator substrate, at temperatures between 650 and 750 °C, favors formation of the vanadium-rich A15 phase by limiting the supply of available silicon for the reaction. Energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction verify the stoichiometry and structure of the synthesized thin films. We measure superconducting critical currents of more than 106 amperes per square centimeter at low temperature in micron-scale bars fabricated from the material, and an upper critical magnetic field of 20 T, from which we deduce a superconducting coherence length of 4 nm, consistent with previously reported bulk values. The relatively high critical temperature of A15 vanadium silicide is an appealing property for use in silicon-compatible quantum devices and circuits.

4.
Adv Biosyst ; 4(9): e2000143, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32744809

RESUMEN

This report examines how sensing of substrate topography can be used to modulate T cell activation, a key coordinating step in the adaptive immune response. Inspired by the native T cell-antigen presenting cell interface, micrometer scale pits with varying depth are fabricated into planar substrates. Primary CD4+ T cells extend actin-rich protrusions into the micropits. T cell activation, reflected in secretion of cytokines interleukin-2 and interferon gamma, is sensitive to the micropit depth. Surprisingly, arrays of micropits with 4 µm depth enhance activation compared to flat substrates but deeper micropits are less effective at increasing cell response, revealing a biphasic dependence in activation as a function of feature dimensions. Inhibition of cell contractility abrogates the enhanced activation associated with the micropits. In conclusion, this report demonstrates that the 3D, microscale topography can be used to enhance T cell activation, an ability that most directly can be used to improve production of these cells for immunotherapy.


Asunto(s)
Linfocitos T CD4-Positivos , Ingeniería Celular/métodos , Activación de Linfocitos/fisiología , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/fisiología , Células Cultivadas , Citocinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Bazo/citología , Propiedades de Superficie
5.
Proc Natl Acad Sci U S A ; 116(40): 19835-19840, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527238

RESUMEN

Cells have the remarkable ability to sense the mechanical stiffness of their surroundings. This has been studied extensively in the context of cells interacting with planar surfaces, a conceptually elegant model that also has application in biomaterial design. However, physiological interfaces are spatially complex, exhibiting topographical features that are described over multiple scales. This report explores mechanosensing of microstructured elastomer surfaces by CD4+ T cells, key mediators of the adaptive immune response. We show that T cells form complex interactions with elastomer micropillar arrays, extending processes into spaces between structures and forming local areas of contraction and expansion dictated by the layout of microtubules within this interface. Conversely, cytoskeletal reorganization and intracellular signaling are sensitive to the pillar dimensions and flexibility. Unexpectedly, these measures show different responses to substrate rigidity, suggesting competing processes in overall T cell mechanosensing. The results of this study demonstrate that T cells sense the local rigidity of their environment, leading to strategies for biomaterial design.


Asunto(s)
Inmunidad Adaptativa , Materiales Biocompatibles/química , Linfocitos T CD4-Positivos/inmunología , Sinapsis Inmunológicas/inmunología , Activación de Linfocitos , Actinas/metabolismo , Animales , Antígenos CD28/inmunología , Complejo CD3/inmunología , Comunicación Celular , Proliferación Celular , Citoesqueleto/metabolismo , Sistema Inmunológico , Mecanotransducción Celular , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Transducción de Señal , Bazo/metabolismo , Propiedades de Superficie
6.
Sci Rep ; 9(1): 6914, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061512

RESUMEN

Nanodiamonds hosting colour centres are a promising material platform for various quantum technologies. The fabrication of non-aggregated and uniformly-sized nanodiamonds with systematic integration of single quantum emitters has so far been lacking. Here, we present a top-down fabrication method to produce 30.0 ± 5.4 nm uniformly-sized single-crystal nanodiamonds by block copolymer self-assembled nanomask patterning together with directional and isotropic reactive ion etching. We show detected emission from bright single nitrogen vacancy centres hosted in the fabricated nanodiamonds. The lithographically precise patterning of large areas of diamond by self-assembled masks and their release into uniformly sized nanodiamonds open up new possibilities for quantum information processing and sensing.

7.
Sci Immunol ; 4(33)2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30902904

RESUMEN

Cytotoxic T lymphocytes (CTLs) kill by forming immunological synapses with target cells and secreting toxic proteases and the pore-forming protein perforin into the intercellular space. Immunological synapses are highly dynamic structures that boost perforin activity by applying mechanical force against the target cell. Here, we used high-resolution imaging and microfabrication to investigate how CTLs exert synaptic forces and coordinate their mechanical output with perforin secretion. Using micropatterned stimulatory substrates that enable synapse growth in three dimensions, we found that perforin release occurs at the base of actin-rich protrusions that extend from central and intermediate locations within the synapse. These protrusions, which depended on the cytoskeletal regulator WASP and the Arp2/3 actin nucleation complex, were required for synaptic force exertion and efficient killing. They also mediated physical deformation of the target cell surface during CTL-target cell interactions. Our results reveal the mechanical basis of cellular cytotoxicity and highlight the functional importance of dynamic, three-dimensional architecture in immune cell-cell interfaces.


Asunto(s)
Sinapsis Inmunológicas/inmunología , Perforina/inmunología , Linfocitos T Citotóxicos/inmunología , Complejo 2-3 Proteico Relacionado con la Actina/inmunología , Actinas/inmunología , Animales , Ratones , Proteína del Síndrome de Wiskott-Aldrich/inmunología
8.
Phys Rev E ; 100(6-1): 062503, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31962430

RESUMEN

Complex fluids near interfaces or confined within nanoscale volumes can exhibit substantial shifts in physical properties compared to bulk, including glass transition temperature, phase separation, and crystallization. Because studies of these effects typically use thin film samples with one dimension of confinement, it is generally unclear how more extreme spatial confinement may influence these properties. In this work, we used x-ray photon correlation spectroscopy and gold nanoprobes to characterize polyethylene oxide confined by nanostructured gratings (<100nm width) and measured the viscosity in this nanoconfinement regime to be ∼500 times the bulk viscosity. This enhanced viscosity occurs even when the scale of confinement is several times the polymer's radius of gyration, consistent with previous reports of polymer viscosity near flat interfaces.

9.
J Vis Exp ; (139)2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30272655

RESUMEN

We demonstrate extension of electron-beam lithography using conventional resists and pattern transfer processes to single-digit nanometer dimensions by employing an aberration-corrected scanning transmission electron microscope as the exposure tool. Here, we present results of single-digit nanometer patterning of two widely used electron-beam resists: poly (methyl methacrylate) and hydrogen silsesquioxane. The method achieves sub-5 nanometer features in poly (methyl methacrylate) and sub-10 nanometer resolution in hydrogen silsesquioxane. High-fidelity transfer of these patterns into target materials of choice can be performed using metal lift-off, plasma etch, and resist infiltration with organometallics.


Asunto(s)
Microscopía Electrónica de Transmisión/métodos , Nanopartículas/química , Tomografía Computarizada por Rayos X/métodos
10.
Nano Lett ; 17(8): 4562-4567, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28418673

RESUMEN

Patterning materials efficiently at the smallest length scales is a longstanding challenge in nanotechnology. Electron-beam lithography (EBL) is the primary method for patterning arbitrary features, but EBL has not reliably provided sub-4 nm patterns. The few competing techniques that have achieved this resolution are orders of magnitude slower than EBL. In this work, we employed an aberration-corrected scanning transmission electron microscope for lithography to achieve unprecedented resolution. Here we show aberration-corrected EBL at the one nanometer length scale using poly(methyl methacrylate) (PMMA) and have produced both the smallest isolated feature in any conventional resist (1.7 ± 0.5 nm) and the highest density patterns in PMMA (10.7 nm pitch for negative-tone and 17.5 nm pitch for positive-tone PMMA). We also demonstrate pattern transfer from the resist to semiconductor and metallic materials at the sub-5 nm scale. These results indicate that polymer-based nanofabrication can achieve feature sizes comparable to the Kuhn length of PMMA and ten times smaller than its radius of gyration. Use of aberration-corrected EBL will increase the resolution, speed, and complexity in nanomaterial fabrication.

11.
Soft Matter ; 13(18): 3275-3283, 2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-28393167

RESUMEN

Despite active research, many fundamental aspects of block copolymer ordering remain unresolved. We studied the thickness-dependence of block copolymer grain coarsening kinetics, and find that thinner films order more rapidly than thicker films. Bilayer films, or monolayers with partial layers of islands, order more slowly than monolayers because of the greater amount of material that must rearrange in a coordinated fashion. Sub-monolayer films order much more rapidly than monolayers, exhibiting considerably smaller activation energies, as well as larger exponents for the time-growth power-law. Using molecular dynamics simulations, we directly study the motion of defects in these film regimes. We attribute the enhanced grain growth in sub-monolayers to the film boundaries, where defects can be spontaneously eliminated. The boundaries thus act as efficient sinks for morphological defects, pointing towards methods for engineering rapid ordering of self-assembling thin films.

12.
Nat Mater ; 16(6): 658-663, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28250447

RESUMEN

Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal's survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importance of the texture's feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. This undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 µm.

13.
Methods Mol Biol ; 1584: 333-346, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28255710

RESUMEN

Recent insights into the importance of mechanosensing and force transmission at the immune synapse have spurred increased interest in the mechanical properties of leukocyte cell-cell interactions. In this chapter, we describe an imaging-based strategy for measuring cellular forces that utilizes optically transparent arrays of flexible micropillars. This approach has several distinct advantages over standard traction force microscopy, and we anticipate that it will prove very useful for investigators who wish not only to quantify ligand-induced forces with high spatiotemporal resolution but also to place those forces within the context of a broader cell biological response.


Asunto(s)
Linfocitos T CD4-Positivos/química , Linfocitos T CD8-positivos/química , Sinapsis Inmunológicas/química , Análisis por Micromatrices/instrumentación , Análisis por Micromatrices/métodos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Humanos , Sinapsis Inmunológicas/inmunología , Microscopía/instrumentación , Microscopía/métodos
14.
Nat Commun ; 7: 13988, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28004774

RESUMEN

Self-assembly is a powerful paradigm, wherein molecules spontaneously form ordered phases exhibiting well-defined nanoscale periodicity and shapes. However, the inherent energy-minimization aspect of self-assembly yields a very limited set of morphologies, such as lamellae or hexagonally packed cylinders. Here, we show how soft self-assembling materials-block copolymer thin films-can be manipulated to form a diverse library of previously unreported morphologies. In this iterative assembly process, each polymer layer acts as both a structural component of the final morphology and a template for directing the order of subsequent layers. Specifically, block copolymer films are immobilized on surfaces, and template successive layers through subtle surface topography. This strategy generates an enormous variety of three-dimensional morphologies that are absent in the native block copolymer phase diagram.

15.
Nanoscale ; 8(22): 11595-601, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27216015

RESUMEN

In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.

16.
Sci Rep ; 6: 24237, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27072195

RESUMEN

The dependence of the wettability of graphene on the nature of the underlying substrate remains only partially understood. Here, we systematically investigate the role of liquid-substrate interactions on the wettability of graphene by varying the area fraction of suspended graphene from 0 to 95% by means of nanotextured substrates. We find that completely suspended graphene exhibits the highest water contact angle (85° ± 5°) compared to partially suspended or supported graphene, regardless of the hydrophobicity (hydrophilicity) of the substrate. Further, 80% of the long-range water-substrate interactions are screened by the graphene monolayer, the wettability of which is primarily determined by short-range graphene-liquid interactions. By its well-defined chemical and geometrical properties, supported graphene therefore provides a model system to elucidate the relative contribution of short and long range interactions to the macroscopic contact angle.

17.
Langmuir ; 32(1): 151-8, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26672623

RESUMEN

Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Our results show that protein functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.


Asunto(s)
Membranas Artificiales , Polímeros/química , Proteínas/química , Muramidasa/química , Nanoporos , Poliestirenos/química
18.
Nat Commun ; 6: 8242, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26382113

RESUMEN

Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.


Asunto(s)
Electrones , Imidas/metabolismo , Perileno/análogos & derivados , Polímeros/metabolismo , Semiconductores , Energía Solar , Suministros de Energía Eléctrica , Imidas/química , Microscopía de Fuerza Atómica , Estructura Molecular , Nanotecnología , Perileno/química , Perileno/metabolismo , Polímeros/química , Análisis Espectral , Difracción de Rayos X
19.
Nat Commun ; 6: 7448, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26100566

RESUMEN

Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes.

20.
Nat Commun ; 6: 5963, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25607887

RESUMEN

Materials providing broadband light antireflection have applications as highly transparent window coatings, military camouflage, and coatings for efficiently coupling light into solar cells and out of light-emitting diodes. In this work, densely packed silicon nanotextures with feature sizes smaller than 50 nm enhance the broadband antireflection compared with that predicted by their geometry alone. A significant fraction of the nanotexture volume comprises a surface layer whose optical properties differ substantially from those of the bulk, providing the key to improved performance. The nanotexture reflectivity is quantitatively well-modelled after accounting for both its profile and changes in refractive index at the surface. We employ block copolymer self-assembly for precise and tunable nanotexture design in the range of ~10-70 nm across macroscopic solar cell areas. Implementing this efficient antireflection approach in crystalline silicon solar cells significantly betters the performance gain compared with an optimized, planar antireflection coating.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA