Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 13(12)2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-38136609

RESUMEN

A major consequence of insulin binding its receptor on fat and muscle cells is the stimulation of glucose transport into these tissues. This is achieved through an increase in the exocytic trafficking rate of the facilitative glucose transporter GLUT4 from intracellular stores to the cell surface. Delivery of GLUT4 to the cell surface requires the formation of functional SNARE complexes containing Syntaxin 4, SNAP23, and VAMP2. Insulin stimulates the formation of these complexes and concomitantly causes phosphorylation of Syntaxin 4. Here, we use a combination of biochemistry and cell biological approaches to provide a mechanistic link between these observations. We present data to support the hypothesis that Tyr-115 and Tyr-251 of Syntaxin 4 are direct substrates of activated insulin receptors, and that these residues modulate the protein's conformation and thus regulate the rate at which Syntaxin 4 forms SNARE complexes that deliver GLUT4 to the cell surface. This report provides molecular details on how the cell regulates SNARE-mediated membrane traffic in response to an external stimulus.


Asunto(s)
Receptor de Insulina , Proteínas SNARE , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Receptor de Insulina/metabolismo , Fosforilación , Membrana Celular/metabolismo , Insulina/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo
2.
Biosci Rep ; 42(7)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35735144

RESUMEN

Insulin stimulates glucose transport in muscle and adipocytes. This is achieved by regulated delivery of intracellular glucose transporter (GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, resulting in increased cell surface GLUT4 levels. Recent work identified a potential further regulatory step, in which insulin increases the dispersal of GLUT4 in the plasma membrane away from the sites of vesicle fusion. EFR3 is a scaffold protein that facilitates localization of phosphatidylinositol 4-kinase type IIIα to the cell surface. Here we show that knockdown of EFR3 or phosphatidylinositol 4-kinase type IIIα impairs insulin-stimulated glucose transport in adipocytes. Using direct stochastic reconstruction microscopy, we also show that EFR3 knockdown impairs insulin stimulated GLUT4 dispersal in the plasma membrane. We propose that EFR3 plays a previously unidentified role in controlling insulin-stimulated glucose transport by facilitating dispersal of GLUT4 within the plasma membrane.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa , Insulina , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Transporte Biológico , Membrana Celular/metabolismo , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Insulina/farmacología , Ratones
3.
J Cell Sci ; 135(1)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34859814

RESUMEN

Adipocytes are key to metabolic regulation, exhibiting insulin-stimulated glucose transport that is underpinned by the insulin-stimulated delivery of glucose transporter type 4 (SLC2A4, also known and hereafter referred to as GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, and increase cell surface GLUT4 levels. Adipocytokines, such as adiponectin, are secreted via a similar mechanism. We used genome editing to knock out syntaxin-4, a protein reported to mediate fusion between GLUT4-containing vesicles and the plasma membrane in 3T3-L1 adipocytes. Syntaxin-4 knockout reduced insulin-stimulated glucose transport and adiponectin secretion by ∼50% and reduced GLUT4 levels. Ectopic expression of haemagglutinin (HA)-tagged GLUT4 conjugated to GFP showed that syntaxin-4-knockout cells retain significant GLUT4 translocation capacity, demonstrating that syntaxin-4 is dispensable for insulin-stimulated GLUT4 translocation. Analysis of recycling kinetics revealed only a modest reduction in the exocytic rate of GLUT4 in knockout cells, and little effect on endocytosis. These analyses demonstrate that syntaxin-4 is not always rate limiting for GLUT4 delivery to the cell surface. In sum, we show that syntaxin-4 knockout results in reduced insulin-stimulated glucose transport, depletion of cellular GLUT4 levels and inhibition of adiponectin secretion but has only modest effects on the translocation capacity of the cells. This article has an associated First Person interview with Hannah L. Black and Rachel Livingstone, joint first authors of the paper.


Asunto(s)
Adipocitos , Adiponectina , Células 3T3 , Células 3T3-L1 , Adipocitos/metabolismo , Adiponectina/genética , Animales , Membrana Celular/metabolismo , Transportador de Glucosa de Tipo 4/genética , Humanos , Insulina/metabolismo , Ratones , Proteínas Qa-SNARE/genética
4.
PeerJ ; 8: e8751, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32185116

RESUMEN

Insulin-stimulated glucose transport is a characteristic property of adipocytes and muscle cells and involves the regulated delivery of glucose transporter (GLUT4)-containing vesicles from intracellular stores to the cell surface. Fusion of these vesicles results in increased numbers of GLUT4 molecules at the cell surface. In an attempt to overcome some of the limitations associated with both primary and cultured adipocytes, we expressed an epitope- and GFP-tagged version of GLUT4 (HA-GLUT4-GFP) in HeLa cells. Here we report the characterisation of this system compared to 3T3-L1 adipocytes. We show that insulin promotes translocation of HA-GLUT4-GFP to the surface of both cell types with similar kinetics using orthologous trafficking machinery. While the magnitude of the insulin-stimulated translocation of GLUT4 is smaller than mouse 3T3-L1 adipocytes, HeLa cells offer a useful, experimentally tractable, human model system. Here, we exemplify their utility through a small-scale siRNA screen to identify GOSR1 and YKT6 as potential novel regulators of GLUT4 trafficking in human cells.

5.
J Neurochem ; 137(4): 518-27, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26865271

RESUMEN

Mint/X11 is one of the four neuronal trafficking adaptors that interact with amyloid precursor protein (APP) and are linked with its cleavage to generate ß-amyloid peptide, a key player in the pathology of Alzheimer's disease. How APP switches between adaptors at different stages of the secretory pathway is poorly understood. Here, we show that tyrosine phosphorylation of Mint1 regulates the destination of APP. A canonical SH2-binding motif ((202) YEEI) was identified in the N-terminus of Mint1 that is phosphorylated on tyrosine by C-Src and recruits the active kinase for sequential phosphorylation of further tyrosines (Y191 and Y187). A single Y202F mutation in the Mint1 N-terminus inhibits C-Src binding and tyrosine phosphorylation. Previous studies observed that co-expression of wild-type Mint1 and APP causes accumulation of APP in the trans-Golgi. Unphosphorylatable Mint1 (Y202F) or pharmacological inhibition of Src reduced the accumulation of APP in the trans-Golgi of heterologous cells. A similar result was observed in cultured rat hippocampal neurons where Mint1(Y202F) permitted the trafficking of APP to more distal neurites than the wild-type protein. These data underline the importance of the tyrosine phosphorylation of Mint1 as a critical switch for determining the destination of APP. The regulation of amyloid precursor protein (APP) trafficking is poorly understood. We have discovered that the APP adapter, Mint1, is phosphorylated by C-Src kinase. Mint1 causes APP accumulation in the trans-Golgi network, whereas inhibition of Src or mutation of Mint1-Y202 permits APP recycling. The phosphorylation status of Mint1 could impact on the pathological trafficking of APP in Alzheimer's disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tirosina/metabolismo , Familia-src Quinasas/metabolismo , Red trans-Golgi/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Femenino , Células HeLa , Humanos , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Fosforilación/fisiología , Transporte de Proteínas/fisiología , Ratas , Ratas Wistar , Tirosina/genética , Familia-src Quinasas/genética , Red trans-Golgi/genética
6.
Biochem Soc Trans ; 42(5): 1396-400, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25233421

RESUMEN

Insulin plays a fundamental role in whole-body glucose homeostasis. Central to this is the hormone's ability to rapidly stimulate the rate of glucose transport into adipocytes and muscle cells [1]. Upon binding its receptor, insulin stimulates an intracellular signalling cascade that culminates in redistribution of glucose transporter proteins, specifically the GLUT4 isoform, from intracellular stores to the plasma membrane, a process termed 'translocation' [1,2]. This is an example of regulated membrane trafficking [3], a process that also underpins other aspects of physiology in a number of specialized cell types, for example neurotransmission in brain/neurons and release of hormone-containing vesicles from specialized secretory cells such as those found in pancreatic islets. These processes invoke a number of intriguing biological questions as follows. How is the machinery involved in these membrane trafficking events mobilized in response to a stimulus? How do the signalling pathways that detect the external stimulus interface with the trafficking machinery? Recent studies of insulin-stimulated GLUT4 translocation offer insight into such questions. In the present paper, we have reviewed these studies and draw parallels with other regulated trafficking systems.


Asunto(s)
Adipocitos Blancos/metabolismo , Membrana Celular/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Receptor de Insulina/agonistas , Proteínas SNARE/metabolismo , Transducción de Señal , Animales , Transportador de Glucosa de Tipo 4/química , Humanos , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Transporte de Proteínas , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/química , Proteínas Qc-SNARE/metabolismo , Receptor de Insulina/metabolismo , Proteínas SNARE/química , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA