Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
New Phytol ; 209(2): 612-23, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26414490

RESUMEN

Phototropins (phots) regulate a range of adaptive processes in plants that serve to optimize photosynthetic efficiency and promote growth. Light sensing by Arabidopsis thaliana phots is predominantly mediated by the Light, Oxygen and Voltage sensing 2 (LOV2) flavin-binding motif located within the N-terminus of the photoreceptor. Here we characterize the photochemical and biochemical properties of phot from the marine picoalga Ostreococcus tauri phototropin (Otphot) and examine its ability to replace phot-mediated function in Arabidopsis. Photochemical properties of Otphot rely on both LOV1 and LOV2. Yet, biochemical analysis indicates that light-dependent receptor autophosphorylation is primarily dependent on LOV2. As found for Arabidopsis phots, Otphot associates with the plasma membrane and partially internalizes, albeit to a limited extent, in response to blue-light irradiation. Otphot is able to elicit a number of phot-regulated processes in Arabidopsis, including petiole positioning, leaf expansion, stomatal opening and chloroplast accumulation movement. However, Otphot is unable to restore phototropism and chloroplast avoidance movement. Consistent with its lack of phototropic function in Arabidopsis, Otphot does not associate with or trigger dephosphorylation of the phototropic signalling component Non-Phototropic Hypocotyl 3 (NPH3). Taken together, these findings indicate that the mechanism of action of plant and evolutionarily distant algal phots is less well conserved than previously thought.


Asunto(s)
Chlorophyta/genética , Fototropinas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Fototropinas/genética , Fototropismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas
4.
New Phytol ; 206(3): 1038-1050, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25643813

RESUMEN

The phototropin 1 (phot1) blue light receptor mediates a number of adaptive responses, including phototropism, that generally serve to optimize photosynthetic capacity. Phot1 is a plasma membrane-associated protein, but upon irradiation, a fraction is internalized into the cytoplasm. Although this phenomenon has been reported for more than a decade, its biological significance remains elusive. Here, we use a genetic approach to revisit the prevalent hypotheses regarding the functional importance of receptor internalization. Transgenic plants expressing lipidated versions of phot1 that are permanently anchored to the plasma membrane were used to analyse the effect of internalization on receptor turnover, phototropism and other phot1-mediated responses. Myristoylation and farnesylation effectively prevented phot1 internalization. Both modified photoreceptors were found to be fully functional in Arabidopsis, rescuing phototropism and all other phot1-mediated responses tested. Light-mediated phot1 turnover occurred as in the native receptor. Furthermore, our work does not provide any evidence of a role of phot1 internalization in the attenuation of receptor signalling during phototropism. Our results demonstrate that phot1 signalling is initiated at the plasma membrane. They furthermore indicate that release of phot1 into the cytosol is not linked to receptor turnover or desensitization.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas Ligadas a Lípidos/fisiología , Fosfoproteínas/fisiología , Fototropinas/fisiología , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fototropinas/genética , Fototropinas/metabolismo , Fototropismo/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/efectos de la radiación , Proteínas Serina-Treonina Quinasas , Transducción de Señal
5.
Plant Cell Physiol ; 56(3): 401-13, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25516569

RESUMEN

Plants depend on the surrounding light environment to direct their growth. Blue light (300-500 nm) in particular acts to promote a wide variety of photomorphogenic responses including seedling establishment, phototropism and circadian clock regulation. Several different classes of flavin-based photoreceptors have been identified that mediate the effects of blue light in the dicotyledonous genetic model Arabidopsis thaliana. These include the cryptochromes, the phototropins and members of the Zeitlupe family. In this review, we discuss recent advances, which contribute to our understanding of how these photosensory systems are activated by blue light and how they initiate signaling to regulate diverse aspects of plant development.


Asunto(s)
Flavoproteínas/metabolismo , Fotorreceptores de Plantas/metabolismo , Criptocromos/metabolismo , Modelos Biológicos , Fototropinas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA