Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Sci (Paris) ; 23(11): 910-6, 2007 Nov.
Artículo en Francés | MEDLINE | ID: mdl-18021699

RESUMEN

Adolescent idiopathic scoliosis (AIS) is the most common form of scoliosis that affects a significant number of young teenagers, mainly females (0.2-6 % of the population). Historically, several hypothesis were postulated to explain the aetiology of AIS, including genetic factors, biochemical factors, mechanics, neurological, muscular factors and hormonal factors. The neuroendocrine hypothesis involving a melatonin deficiency as the source for AIS has generated great interest. This hypothesis stems from the fact that experimental pinealectomy in chicken, and more recently in rats maintained in a bipedal mode, produces a scoliosis. The biological relevance of melatonin in idiopathic scoliosis is controversial since no significant decrease in circulating melatonin level has been observed in a majority of studies. Analysis of melatonin signal transduction in musculoskeletal tissues of AIS patients demonstrated for the first time a defect occurring in a cell autonomous manner in different cell types isolated from AIS patients suffering of the most severe form of that disease. These results have led to a classification of AIS patients in three different functional groups depending on their response to melatonin, suggesting that the cause of AIS involves several genes. Molecular analysis showed that melatonin signaling dysfunction is triggered by an increased phosphorylation of Gi proteins inactivating their function. This discovery has led to development of a first scoliosis screening assay. This test, using blood sample, is currently in clinical validation process in Canada and could be used for screening children at high risk of developing AIS.


Asunto(s)
Escoliosis/etiología , Escoliosis/genética , Adolescente , Huesos/patología , Femenino , Humanos , Masculino , Músculo Esquelético/patología , Sistemas Neurosecretores/fisiopatología , Escoliosis/patología , Razón de Masculinidad
2.
J Lipid Res ; 46(8): 1668-77, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15897603

RESUMEN

It is generally thought that the large heterogeneity of human HDL confers antiatherogenic properties; however, the mechanisms governing HDL biogenesis and speciation are complex and poorly understood. Here, we show that incubation of exogenous apolipoprotein A-I (apoA-I) with fibroblasts, CaCo-2, or CHO-overexpressing ABCA1 cells generates only alpha-nascent apolipoprotein A-I-containing particles (alpha-LpA-I) with diameters of 8-20 nm, whereas human umbilical vein endothelial cells and ABCA1 mutant (Q597R) cells were unable to form such particles. Interestingly, incubation of exogenous apoA-I with either HepG2 or macrophages generates both alpha-LpA-I and prebeta1-LpA-I. Furthermore, glyburide inhibits almost completely the formation of alpha-LpA-I but not prebeta1-LpA-I. Similarly, endogenously secreted HepG2 apoA-I was found to be associated with both prebeta1-LpA-I and alpha-LpA-I; by contrast, CaCo-2 cells secreted only alpha-LpA-I. To determine whether alpha-LpA-I generated by fibroblasts is a good substrate for LCAT, isolated alpha-LpA-I as well as reconstituted HDL [r(HDL)] was reacted with LCAT. Although both particles had similar V(max) (8.4 vs. 8.2 nmol cholesteryl ester/h/microg LCAT, respectively), the K(m) value was increased 2-fold for alpha-LpA-I compared with r(HDL) (1.2 vs. 0.7 microM apoA-I). These results demonstrate that 1) ABCA1 is required for the formation of alpha-LpA-I but not prebeta1-LpA-I; and 2) alpha-LpA-I interacts efficiently with LCAT. Thus, our study provides direct evidence for a new link between specific cell lines and the speciation of nascent HDL that occurs by both ABCA1-dependent and -independent pathways.


Asunto(s)
Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/biosíntesis , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Línea Celular , Fibroblastos/metabolismo , Humanos , Cinética , Tamaño de la Partícula , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo
3.
J Lipid Res ; 46(7): 1457-65, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15654121

RESUMEN

It has been suggested that ABCA1 interacts preferentially with lipid-poor apolipoprotein A-I (apoA-I). Here, we show that treatment of plasma with dimyristoyl phosphatidylcholine (DMPC) multilamellar vesicles generates prebeta(1)-apoA-I-containing lipoproteins (LpA-I)-like particles similar to those of native plasma. Isolated prebeta(1)-LpA-I-like particles inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than HDL(3) (IC(50) = 2.20 +/- 0.35 vs. 37.60 +/- 4.78 microg/ml). We next investigated the ability of DMPC-treated plasma to promote phospholipid and unesterified (free) cholesterol efflux from J774 macrophages stimulated or not with cAMP. At 2 mg DMPC/ml plasma, both phospholipid and free cholesterol efflux were increased ( approximately 50% and 40%, respectively) in cAMP-stimulated cells compared with unstimulated cells. Similarly, both phospholipid and free cholesterol efflux to either isolated native prebeta(1)-LpA-I and prebeta(1)-LpA-I-like particles were increased significantly in stimulated cells. Furthermore, glyburide significantly inhibited phospholipid and free cholesterol efflux to DMPC-treated plasma. Removal of apoA-I-containing lipoproteins from normolipidemic plasma drastically reduced free cholesterol efflux mediated by DMPC-treated plasma. Finally, treatment of Tangier disease plasma with DMPC affected the amount of neither prebeta(1)-LpA-I nor free cholesterol efflux. These results indicate that DMPC enrichment of normal plasma resulted in the redistribution of apoA-I from alpha-HDL to prebeta-HDL, allowing for more efficient ABCA1-mediated cellular lipid release. Increasing the plasma prebeta(1)-LpA-I level by either pharmacological agents or direct infusions might prevent foam cell formation and reduce atherosclerotic vascular disease.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/sangre , Lipoproteínas HDL/química , Fosfolípidos/química , Transportador 1 de Casete de Unión a ATP , Animales , Apolipoproteína A-I/sangre , Apolipoproteína A-I/efectos de los fármacos , Células Cultivadas , Dimiristoilfosfatidilcolina/química , Humanos , Lipoproteínas HDL3 , Liposomas/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Enfermedad de Tangier/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA