Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
2.
Neuromolecular Med ; 26(1): 23, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861223

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative disease affecting motor neurons. Pathological forms of Tar-DNA binding protein-43 (TDP-43), involving its mislocalisation to the cytoplasm and the formation of misfolded inclusions, are present in almost all ALS cases (97%), and ~ 50% cases of the related condition, frontotemporal dementia (FTD), highlighting its importance in neurodegeneration. Previous studies have shown that endoplasmic reticulum protein 57 (ERp57), a member of the protein disulphide isomerase (PDI) family of redox chaperones, is protective against ALS-linked mutant superoxide dismutase (SOD1) in neuronal cells and transgenic SOD1G93A mouse models. However, it remains unclear whether ERp57 is protective against pathological TDP-43 in ALS. Here, we demonstrate that ERp57 is protective against key features of TDP-43 pathology in neuronal cells. ERp57 inhibited the mislocalisation of TDP-43M337V from the nucleus to the cytoplasm. In addition, ERp57 inhibited the number of inclusions formed by ALS-associated variant TDP-43M337V and reduced the size of these inclusions. ERp57 was also protective against ER stress and induction of apoptosis. Furthermore, ERp57 modulated the steady-state expression levels of TDP-43. This study therefore demonstrates a novel mechanism of action of ERp57 in ALS. It also implies that ERp57 may have potential as a novel therapeutic target to prevent the TDP-43 pathology associated with neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Cuerpos de Inclusión , Proteína Disulfuro Isomerasas , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/genética , Animales , Ratones , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Superóxido Dismutasa-1/genética , Mutación
3.
Artículo en Inglés | MEDLINE | ID: mdl-38726482

RESUMEN

In patients of Asian ancestry, a heterozygous CGG repeat expansion of >100 units in LRP12 is the cause of oculopharyngodistal myopathy type 1 (OPDM1). Repeat lengths of between 61 and 100 units have been associated with rare amyotrophic lateral sclerosis (ALS) cases of Asian ancestry, although with unusually long disease duration and without significant upper motor neuron involvement. This study sought to determine whether LRP12 CGG repeat expansions were also present in ALS patients of European ancestry. Whole-genome sequencing data from 608 sporadic ALS patients, 35 familial ALS probands, and 4703 neurologically normal controls were screened for LRP12 CGG expansions using ExpansionHunter v4. All individuals had LRP12 CGG repeat lengths within the normal range of 3-25 units. To date, LRP12 CGG repeat expansions have not been reported in ALS patients of European ancestry and may be limited to rare ALS patients of Asian ancestry and atypical clinical presentations.

4.
Neuron ; 112(8): 1249-1264.e8, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38366598

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by cytoplasmic deposition of the nuclear TAR-binding protein 43 (TDP-43). Although cytoplasmic re-localization of TDP-43 is a key event in the pathogenesis of ALS/FTD, the underlying mechanisms remain unknown. Here, we identified a non-canonical interaction between 14-3-3θ and TDP-43, which regulates nuclear-cytoplasmic shuttling. Neuronal 14-3-3θ levels were increased in sporadic ALS and FTD with TDP-43 pathology. Pathogenic TDP-43 showed increased interaction with 14-3-3θ, resulting in cytoplasmic accumulation, insolubility, phosphorylation, and fragmentation of TDP-43, resembling pathological changes in disease. Harnessing this increased affinity of 14-3-3θ for pathogenic TDP-43, we devised a gene therapy vector targeting TDP-43 pathology, which mitigated functional deficits and neurodegeneration in different ALS/FTD mouse models expressing mutant or non-mutant TDP-43, including when already symptomatic at the time of treatment. Our study identified 14-3-3θ as a mediator of cytoplasmic TDP-43 localization with implications for ALS/FTD pathogenesis and therapy.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Animales , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/metabolismo , Neuronas/metabolismo
5.
Brain Pathol ; 34(3): e13230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38115557

RESUMEN

Mutations in the UBQLN2 gene cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The neuropathology of such UBQLN2-linked cases of ALS/FTD is characterised by aggregates of the ubiquilin 2 protein in addition to aggregates of the transactive response DNA-binding protein of 43 kDa (TDP-43). ALS and FTD without UBQLN2 mutations are also characterised by TDP-43 aggregates, that may or may not colocalise with wildtype ubiquilin 2. Despite this, the relative contributions of TDP-43 and ubiquilin 2 to disease pathogenesis remain largely under-characterised, as does their relative deposition as aggregates across the central nervous system (CNS). Here we conducted multiplex immunohistochemistry of three UBQLN2 p.T487I-linked ALS/FTD cases, three non-UBQLN2-linked (sporadic) ALS cases, and 8 non-neurodegenerative disease controls, covering 40 CNS regions. We then quantified ubiquilin 2 aggregates, TDP-43 aggregates and aggregates containing both proteins in regions of interest to determine how UBQLN2-linked and non-UBQLN2-linked proteinopathy differ. We find that ubiquilin 2 aggregates that are negative for TDP-43 are predominantly small and punctate and are abundant in the hippocampal formation, spinal cord, all tested regions of neocortex, medulla and substantia nigra in UBQLN2-linked ALS/FTD but not sporadic ALS. Curiously, the striatum harboured small punctate ubiquilin 2 aggregates in all cases examined, while large diffuse striatal ubiquilin 2 aggregates were specific to UBQLN2-linked ALS/FTD. Overall, ubiquilin 2 is mainly deposited in clinically unaffected regions throughout the CNS such that symptomology in UBQLN2-linked cases maps best to the aggregation of TDP-43.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Mutación , Factores de Transcripción/metabolismo
6.
Sci Rep ; 13(1): 20467, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993492

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a severely debilitating neurodegenerative condition that is part of the same disease spectrum as frontotemporal dementia (FTD). Mutations in the CCNF gene, encoding cyclin F, are present in both sporadic and familial ALS and FTD. However, the pathophysiological mechanisms underlying neurodegeneration remain unclear. Proper functioning of the endoplasmic reticulum (ER) and Golgi apparatus compartments is essential for normal physiological activities and to maintain cellular viability. Here, we demonstrate that ALS/FTD-associated variant cyclin FS621G inhibits secretory protein transport from the ER to Golgi apparatus, by a mechanism involving dysregulation of COPII vesicles at ER exit sites. Consistent with this finding, cyclin FS621G also induces fragmentation of the Golgi apparatus and activates ER stress, ER-associated degradation, and apoptosis. Induction of Golgi fragmentation and ER stress were confirmed with a second ALS/FTD variant cyclin FS195R, and in cortical primary neurons. Hence, this study provides novel insights into pathogenic mechanisms associated with ALS/FTD-variant cyclin F, involving perturbations to both secretory protein trafficking and ER-Golgi homeostasis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Mutación , Ciclinas/metabolismo
7.
Neuropathol Appl Neurobiol ; 49(6): e12943, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37818590

RESUMEN

AIM: Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative disease with limited therapeutic options. A key factor limiting the development of effective therapeutics is the lack of disease biomarkers. We sought to assess whether biomarkers for diagnosis, prognosis or cohort stratification could be identified by RNA sequencing (RNA-seq) of ALS patient peripheral blood. METHODS: Whole blood RNA-seq data were generated for 96 Australian sporadic ALS (sALS) cases and 48 healthy controls (NCBI GEO accession GSE234297). Differences in sALS-control gene expression, transcript usage and predicted leukocyte proportions were assessed, with pathway analysis used to predict the activity state of biological processes. Weighted Gene Co-expression Network Analysis (WGCNA) and machine learning algorithms were applied to search for diagnostic and prognostic gene expression patterns. Unsupervised clustering analysis was employed to determine whether sALS patient subgroups could be detected. RESULTS: Two hundred and forty-five differentially expressed genes were identified in sALS patients relative to controls, with enrichment of immune, metabolic and stress-related pathways. sALS patients also demonstrated switches in transcript usage across a small set of genes. We established a classification model that distinguished sALS patients from controls with an accuracy of 78% (sensitivity: 79%, specificity: 75%) using the expression of 20 genes. Clustering analysis identified four patient subgroups with gene expression signatures and immune cell proportions reflective of distinct peripheral effects. CONCLUSIONS: Our findings suggest that peripheral blood RNA-seq can identify diagnostic biomarkers and distinguish molecular subtypes of sALS patients however, its prognostic value requires further investigation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Australia , Biomarcadores , Análisis de Secuencia de ARN
8.
J Neuromuscul Dis ; 10(6): 1127-1141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638449

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with genetic and phenotypic heterogeneity. Pathogenic genetic variants remain the only validated cause of disease, the majority of which were discovered in familial ALS patients. While causal gene variants are a lesser contributor to sporadic ALS, an increasing number of risk alleles (low penetrance genetic variants associated with a small increase in disease risk) and variants of uncertain significance have been reported. OBJECTIVE: To examine the pathogenic potential of genetic variation in ALS, we sought to characterise variant- and gene-level attributes of previously reported ALS-implicated variants. METHODS: A list of 1,087 genetic variants reported in ALS to March 2021 was compiled through comprehensive literature review. Individual variants were annotated using in silico tools and databases across variant features including pathogenicity scores, localisation to protein domains, evolutionary conservation, and minor allele frequencies. Gene level attributes of genic tolerance, gene expression in ALS-relevant tissues and gene ontology terms were assessed for 33 ALS genes. Statistical analysis was performed for each characteristic, and we compared the most penetrant variants found in familial cases with risk alleles exclusive to sporadic cases, to explore genetic variant features that associate with disease penetrance. RESULTS: We provide spreadsheet (hg19 and GRCh38) and variant call format (GRCh38) resources for all 1,087 reported ALS-implicated variants, including detailed summaries for each attribute. We demonstrate that the characteristics of variants found exclusively in sporadic ALS cases are less severe than those observed in familial ALS. CONCLUSIONS: We provide a comprehensive, literature-derived catalogue of genetic variation in ALS thus far and reveal crucial attributes that contribute to ALS pathogenicity. Our variant- and gene-level observations highlight the complexity of genetic variation in ALS, and we discuss important implications and considerations for novel variant interpretation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/genética , Frecuencia de los Genes
9.
Mol Neurobiol ; 60(9): 5034-5054, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37243816

RESUMEN

Amyotrophic lateral sclerosis (ALS)- and frontotemporal dementia (FTD)-linked mutations in CCNF have been shown to cause dysregulation to protein homeostasis. CCNF encodes for cyclin F, which is part of the cyclin F-E3 ligase complex SCFcyclinF known to ubiquitylate substrates for proteasomal degradation. In this study, we identified a function of cyclin F to regulate substrate solubility and show how cyclin F mechanistically underlies ALS and FTD disease pathogenesis. We demonstrated that ALS and FTD-associated protein sequestosome-1/p62 (p62) was a canonical substrate of cyclin F which was ubiquitylated by the SCFcyclinF complex. We found that SCFcyclin F ubiquitylated p62 at lysine(K)281, and that K281 regulated the propensity of p62 to aggregate. Further, cyclin F expression promoted the aggregation of p62 into the insoluble fraction, which corresponded to an increased number of p62 foci. Notably, ALS and FTD-linked mutant cyclin F p.S621G aberrantly ubiquitylated p62, dysregulated p62 solubility in neuronal-like cells, patient-derived fibroblasts and induced pluripotent stem cells and dysregulated p62 foci formation. Consistently, motor neurons from patient spinal cord tissue exhibited increased p62 ubiquitylation. We suggest that the p.S621G mutation impairs the functions of cyclin F to promote p62 foci formation and shift p62 into the insoluble fraction, which may be associated to aberrant mutant cyclin F-mediated ubiquitylation of p62. Given that p62 dysregulation is common across the ALS and FTD spectrum, our study provides insights into p62 regulation and demonstrates that ALS and FTD-linked cyclin F mutant p.S621G can drive p62 pathogenesis associated with ALS and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Esclerosis Amiotrófica Lateral/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ciclinas/metabolismo , Ubiquitinación , Mutación/genética
10.
Hum Mol Genet ; 32(14): 2386-2398, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37220877

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders that share pathological features, including the aberrant accumulation of ubiquitinated protein inclusions within motor neurons. Previously, we have shown that the sequestration of ubiquitin (Ub) into inclusions disrupts Ub homeostasis in cells expressing ALS-associated variants superoxide dismutase 1 (SOD1), fused in sarcoma (FUS) and TAR DNA-binding protein 43 (TDP-43). Here, we investigated whether an ALS/FTD-linked pathogenic variant in the CCNF gene, encoding the E3 Ub ligase Cyclin F (CCNF), also perturbs Ub homeostasis. The presence of a pathogenic CCNF variant was shown to cause ubiquitin-proteasome system (UPS) dysfunction in induced pluripotent stem cell-derived motor neurons harboring the CCNF  S621G mutation. The expression of the CCNFS621G variant was associated with an increased abundance of ubiquitinated proteins and significant changes in the ubiquitination of key UPS components. To further investigate the mechanisms responsible for this UPS dysfunction, we overexpressed CCNF in NSC-34 cells and found that the overexpression of both wild-type (WT) and the pathogenic variant of CCNF (CCNFS621G) altered free Ub levels. Furthermore, double mutants designed to decrease the ability of CCNF to form an active E3 Ub ligase complex significantly improved UPS function in cells expressing both CCNFWT and the CCNFS621G variant and were associated with increased levels of free monomeric Ub. Collectively, these results suggest that alterations to the ligase activity of the CCNF complex and the subsequent disruption to Ub homeostasis play an important role in the pathogenesis of CCNF-associated ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Pick , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Ciclinas/genética , Neuronas Motoras/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedad de Pick/metabolismo , Homeostasis/genética , Mutación
11.
Sci Adv ; 9(18): eade2044, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146135

RESUMEN

Pathogenic short tandem repeat (STR) expansions cause over 20 neurodegenerative diseases. To determine the contribution of STRs in sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), we used ExpansionHunter, REviewer, and polymerase chain reaction validation to assess 21 neurodegenerative disease-associated STRs in whole-genome sequencing data from 608 patients with sporadic ALS, 68 patients with sporadic FTD, and 4703 matched controls. We also propose a data-derived outlier detection method for defining allele thresholds in rare STRs. Excluding C9orf72 repeat expansions, 17.6% of clinically diagnosed ALS and FTD cases had at least one expanded STR allele reported to be pathogenic or intermediate for another neurodegenerative disease. We identified and validated 162 disease-relevant STR expansions in C9orf72 (ALS/FTD), ATXN1 [spinal cerebellar ataxia type 1 (SCA1)], ATXN2 (SCA2), ATXN8 (SCA8), TBP (SCA17), HTT (Huntington's disease), DMPK [myotonic dystrophy type 1 (DM1)], CNBP (DM2), and FMR1 (fragile-X disorders). Our findings suggest clinical and pathological pleiotropy of neurodegenerative disease genes and highlight their importance in ALS and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Ataxias Espinocerebelosas , Humanos , Demencia Frontotemporal/genética , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Ataxias Espinocerebelosas/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
12.
Nat Commun ; 13(1): 6901, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371497

RESUMEN

Superoxide dismutase (SOD1) gene variants may cause amyotrophic lateral sclerosis, some of which are associated with a distinct phenotype. Most studies assess limited variants or sample sizes. In this international, retrospective observational study, we compare phenotypic and demographic characteristics between people with SOD1-ALS and people with ALS and no recorded SOD1 variant. We investigate which variants are associated with age at symptom onset and time from onset to death or censoring using Cox proportional-hazards regression. The SOD1-ALS dataset reports age of onset for 1122 and disease duration for 883 people; the comparator population includes 10,214 and 9010 people respectively. Eight variants are associated with younger age of onset and distinct survival trajectories; a further eight associated with younger onset only and one with distinct survival only. Here we show that onset and survival are decoupled in SOD1-ALS. Future research should characterise rarer variants and molecular mechanisms causing the observed variability.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/epidemiología , Superóxido Dismutasa/genética , Fenotipo , Mutación
13.
Acta Neuropathol Commun ; 10(1): 122, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008843

RESUMEN

Multiple neurotoxic proteinopathies co-exist within vulnerable neuronal populations in all major neurodegenerative diseases. Interactions between these pathologies may modulate disease progression, suggesting they may constitute targets for disease-modifying treatments aiming to slow or halt neurodegeneration. Pairwise interactions between superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43) and ubiquitin-binding protein 62/sequestosome 1 (p62) proteinopathies have been reported in multiple transgenic cellular and animal models of amyotrophic lateral sclerosis (ALS), however corresponding examination of these relationships in patient tissues is lacking. Further, the coalescence of all three proteinopathies has not been studied in vitro or in vivo to date. These data are essential to guide therapeutic development and enhance the translation of relevant therapies into the clinic. Our group recently profiled SOD1 proteinopathy in post-mortem spinal cord tissues from familial and sporadic ALS cases, demonstrating an abundance of structurally-disordered (dis)SOD1 conformers which become mislocalized within these vulnerable neurons compared with those of aged controls. To explore any relationships between this, and other, ALS-linked proteinopathies, we profiled TDP-43 and p62 within spinal cord motor neurons of the same post-mortem tissue cohort using multiplexed immunofluorescence and immunohistochemistry. We identified distinct patterns of SOD1, TDP43 and p62 co-deposition and subcellular mislocalization between motor neurons of familial and sporadic ALS cases, which we primarily attribute to SOD1 gene status. Our data demonstrate co-deposition of p62 with mutant and wild-type disSOD1 and phosphorylated TDP-43 in familial and sporadic ALS spinal cord motor neurons, consistent with attempts by p62 to mitigate SOD1 and TDP-43 deposition. Wild-type SOD1 and TDP-43 co-deposition was also frequently observed in ALS cases lacking SOD1 mutations. Finally, alterations to the subcellular localization of the three proteins were tightly correlated, suggesting close relationships between the regulatory mechanisms governing the subcellular compartmentalization of these proteins. Our study is the first to profile spatial relationships between SOD1, TDP-43 and p62 pathologies in post-mortem spinal cord motor neurons of ALS patients, previously only studied in vitro. Our findings suggest interactions between these three key ALS-linked proteins are likely to modulate the formation of their respective proteinopathies, and perhaps the rate of motor neuron degeneration, in ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Neuronas Motoras/metabolismo , Médula Espinal/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
14.
Sci Rep ; 12(1): 10582, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732753

RESUMEN

Individuals encounter varying environmental exposures throughout their lifetimes. Some exposures such as smoking are readily observed and have high personal recall; others are more indirect or sporadic and might only be inferred from long occupational histories or lifestyles. We evaluated the utility of using lifetime-long self-reported exposures for identifying differential methylation in an amyotrophic lateral sclerosis cases-control cohort of 855 individuals. Individuals submitted paper-based surveys on exposure and occupational histories as well as whole blood samples. Genome-wide DNA methylation levels were quantified using the Illumina Infinium Human Methylation450 array. We analyzed 15 environmental exposures using the OSCA software linear and MOA models, where we regressed exposures individually by methylation adjusted for batch effects and disease status as well as predicted scores for age, sex, cell count, and smoking status. We also regressed on the first principal components on clustered environmental exposures to detect DNA methylation changes associated with a more generalised definition of environmental exposure. Five DNA methylation probes across three environmental exposures (cadmium, mercury and metalwork) were significantly associated using the MOA models and seven through the linear models, with one additionally across a principal component representing chemical exposures. Methylome-wide significance for four of these markers was driven by extreme hyper/hypo-methylation in small numbers of individuals. The results indicate the potential for using self-reported exposure histories in detecting DNA methylation changes in response to the environment, but also highlight the confounded nature of environmental exposure in cohort studies.


Asunto(s)
Metilación de ADN , Metales Pesados , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Autoinforme , Fumar
15.
Brain ; 145(9): 3108-3130, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35512359

RESUMEN

Aberrant self-assembly and toxicity of wild-type and mutant superoxide dismutase 1 (SOD1) has been widely examined in silico, in vitro and in transgenic animal models of amyotrophic lateral sclerosis. Detailed examination of the protein in disease-affected tissues from amyotrophic lateral sclerosis patients, however, remains scarce. We used histological, biochemical and analytical techniques to profile alterations to SOD1 protein deposition, subcellular localization, maturation and post-translational modification in post-mortem spinal cord tissues from amyotrophic lateral sclerosis cases and controls. Tissues were dissected into ventral and dorsal spinal cord grey matter to assess the specificity of alterations within regions of motor neuron degeneration. We provide evidence of the mislocalization and accumulation of structurally disordered, immature SOD1 protein conformers in spinal cord motor neurons of SOD1-linked and non-SOD1-linked familial amyotrophic lateral sclerosis cases, and sporadic amyotrophic lateral sclerosis cases, compared with control motor neurons. These changes were collectively associated with instability and mismetallation of enzymatically active SOD1 dimers, as well as alterations to SOD1 post-translational modifications and molecular chaperones governing SOD1 maturation. Atypical changes to SOD1 protein were largely restricted to regions of neurodegeneration in amyotrophic lateral sclerosis cases, and clearly differentiated all forms of amyotrophic lateral sclerosis from controls. Substantial heterogeneity in the presence of these changes was also observed between amyotrophic lateral sclerosis cases. Our data demonstrate that varying forms of SOD1 proteinopathy are a common feature of all forms of amyotrophic lateral sclerosis, and support the presence of one or more convergent biochemical pathways leading to SOD1 proteinopathy in amyotrophic lateral sclerosis. Most of these alterations are specific to regions of neurodegeneration, and may therefore constitute valid targets for therapeutic development.


Asunto(s)
Esclerosis Amiotrófica Lateral , Procesamiento Proteico-Postraduccional , Superóxido Dismutasa-1 , Esclerosis Amiotrófica Lateral/genética , Humanos , Mutación , Médula Espinal/patología , Superóxido Dismutasa-1/genética
16.
Neurobiol Aging ; 116: 92-95, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35613520

RESUMEN

Sporadic amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a complex genetic architecture. The lengths of two short tandem repeats (STRs), at the NEK1 and STMN2 loci, were recently associated with ALS risk in cohorts of European descent. The STMN2 STR was proposed to be predictive of clinical features including the age of onset and disease duration in bulbar onset cases. We sought to investigate NEK1 and STMN2 STR lengths in a cohort of Australian sporadic ALS cases (n = 608) and neurologically healthy controls (n = 4689) of European ancestry. ExpansionHunter was used to determine NEK1 and STMN2 STR length genotypes from whole-genome sequencing data followed by PCR validation of predicted lengths. No significant association was identified between sporadic ALS risk and the length of either STR. Further, neither NEK1 nor STMN2 STR lengths were indicative of the age of onset or disease duration. We report that the NEK1 and STMN2 STRs were not associated with ALS risk or clinical features in this Australian sporadic ALS cohort.


Asunto(s)
Esclerosis Amiotrófica Lateral , Quinasa 1 Relacionada con NIMA , Enfermedades Neurodegenerativas , Estatmina , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Australia , Humanos , Repeticiones de Microsatélite , Quinasa 1 Relacionada con NIMA/genética , Quinasa 1 Relacionada con NIMA/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Estatmina/genética , Estatmina/metabolismo
17.
Neurobiol Dis ; 167: 105673, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35231559

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by the loss of upper and lower motor neurons in the brain and spinal cord. ALS and frontotemporal dementia (FTD) are overlapping diseases with shared pathological features. Affected neurons of people with ALS and FTD typically contain ubiquitin-immunoreactive inclusions, of which TDP-43 (Tar DNA-binding protein of 43 kDa) is a major component. However, what triggers the formation of these abnormal TDP-43 inclusions is unclear. Previously, we identified CCNF mutations in cohorts of familial and sporadic cases of ALS and FTD. CCNF encodes cyclin F, the substrate-binding component of a multiprotein E3 ubiquitin ligase complex that ubiquitylates and subsequently directs a set of protein substrates for proteasomal degradation. Here, we explored the relationship between cyclin F and TDP-43. METHODS: We used a series of complementary biochemical approaches including immunoprecipitations, in vitro ubiquitylation assays, immunofluorescence imaging and immunocytochemistry. Unpaired student t-tests were used to determine statistical significance of the results. RESULTS: In this study, we demonstrate that that the SCFcyclin F complex directly mediates the poly-ubiquitylation of TDP-43. Importantly, we demonstrate that cyclin F bearing the pathogenic ALS/FTD mutation, S621G, leads to aberrant ubiquitylation of TDP-43 as well as the accumulation of K48-ubiquitylated TDP-43 in neuron-like cells. Furthermore, we demonstrate that a patient carrying the ALS/FTD cyclin FS195R mutation displayed skein-like cytoplasmic TDP-43 aggregates, implying abnormal TDP-43 degradation in a CCNF mutation bearing patient. CONCLUSION: In summary, this study reports a direct ubiquitylation mechanism for TDP-43, revealing important insights into the regulation of cyclin F-mediated TDP-43 turnover and clues towards understanding the molecular origins of the ubiquitylated TDP-43 inclusions that are the hallmark pathological feature in ALS and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Humanos , Neuronas Motoras/patología , Enfermedades Neurodegenerativas/patología , Ubiquitinación
18.
Eur J Hum Genet ; 30(5): 532-539, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33907316

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is recognised to be a complex neurodegenerative disease involving both genetic and non-genetic risk factors. The underlying causes and risk factors for the majority of cases remain unknown; however, ever-larger genetic data studies and methodologies promise an enhanced understanding. Recent analyses using published summary statistics from the largest ALS genome-wide association study (GWAS) (20,806 ALS cases and 59,804 healthy controls) identified that schizophrenia (SCZ), cognitive performance (CP) and educational attainment (EA) related traits were genetically correlated with ALS. To provide additional evidence for these correlations, we built single and multi-trait genetic predictors using GWAS summary statistics for ALS and these traits, (SCZ, CP, EA) in an independent Australian cohort (846 ALS cases and 665 healthy controls). We compared methods for generating the risk predictors and found that the combination of traits improved the prediction (Nagelkerke-R2) of the case-control logistic regression. The combination of ALS, SCZ, CP, and EA, using the SBayesR predictor method gave the highest prediction (Nagelkerke-R2) of 0.027 (P value = 4.6 × 10-8), with the odds-ratio for estimated disease risk between the highest and lowest deciles of individuals being 3.15 (95% CI 1.96-5.05). These results support the genetic correlation between ALS, SCZ, CP and EA providing a better understanding of the complexity of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esquizofrenia , Esclerosis Amiotrófica Lateral/genética , Australia , Cognición , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Esquizofrenia/genética
19.
J Neuropathol Exp Neurol ; 81(2): 135-145, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-34939123

RESUMEN

Multi-omics approaches are increasingly being adopted to understand the complex networks underlying disease. The coisolation of high-quality nucleotides from affected tissues is paramount for the parallel analysis of transcriptomic, genomic, and epigenomic data sets. Although nucleotides extracted from postmortem central nervous system (CNS) tissue are widely used in the study of neurodegenerative disease, assessment of methods for the simultaneous isolation of DNA and RNA is limited. Herein, we describe a strategy for the isolation of high-quality DNA and RNA from postmortem human tissue from 7 CNS regions. Motor cortex, frontal cortex, hippocampus, occipital cortex, anterior cingulate cortex, cerebellum, and spinal cord tissues were obtained from 22 individuals diagnosed with motor neuron disease (MND) and 13 neurologically normal controls (n = 245 tissues). We demonstrated that the Qiagen AllPrep DNA/RNA kit consistently isolated DNA and RNA of high yield and quality from all 6 brain regions. Importantly, phenol-chloroform-based extraction was required to isolate high-yield RNA from spinal cord. RNA sequencing using RNA extracted from 6 CNS regions (n = 60) generated high-quality transcriptomes. Hierarchical clustering of data from motor cortex, using an MND susceptibility gene panel and marker genes of disease-associated microglia, demonstrated that MND-specific gene expression signatures could be detected in the transcriptome data.


Asunto(s)
Sistema Nervioso Central , ADN/aislamiento & purificación , ARN/aislamiento & purificación , Anciano , Anciano de 80 o más Años , Autopsia , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Transcriptoma
20.
JAMA Neurol ; 78(10): 1236-1248, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459874

RESUMEN

Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation. Objective: To identify the genetic variants associated with juvenile ALS. Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism. Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members. Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway. Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Predisposición Genética a la Enfermedad/genética , Serina C-Palmitoiltransferasa/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Mutación , Secuenciación del Exoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...