Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 869: 161647, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36669670

RESUMEN

Storm events are the primary mechanisms of delivering fluvial organic carbon (OC) in both dissolved (DOC) and particulate (POC) forms but their sources and flow pathways can vary with seasonal land use and weather. Within the low relief and poorly drained landscapes of a predominantly agricultural watershed in Eastern Iowa, six storm events were monitored for DOC and POC concentrations over a two hydrological year period in order to investigate the export mechanisms, landscape connectivity, and hydro-climatological controls of fluvial OC under representative events and associated management practices. Event-driven dynamics favored POC over DOC, where POC accounted for 54-94 % of total OC export during events, highlighting a sampling-driven bias against POC in the absence of event monitoring. The disparity between POC and DOC export exhibited a seasonal effect, where the POC:DOC export ratio was low (1.3-1.7) for October events while June/July events yielded a much higher value (up to a value of 14.7). The relationships between event DOC and POC export, Normalized Difference Vegetation Index of landscapes, and antecedent wetness conditions suggest a strong interaction or competing influences between vegetation coverage and runoff-generation threshold. While we recognize the low statistical power of the limited data set (n = 6), the storm events could be binned into two clusters: a "bare soil" period and a crop "rapid growth" period. Specifically, intra-storm variations in OC concentration and concentration-discharge (C-Q) hysteresis patterns demonstrated a seasonally-dependent access to contributing OC sources, which can be viewed as the rapid liberation of DOC during the "bare soil" period, and a progressive leaching of terrestrial DOC during the "rapid growth" period. Although high resolution event monitoring of fluvial carbon is rare this work highlights the importance of such efforts to predict C sourcing and transformation in inland water systems under variable land use and across seasons.

2.
Ann Rev Mar Sci ; 4: 401-23, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22457981

RESUMEN

Understanding the fate of terrestrial organic carbon (Corg) delivered to oceans by rivers is critical for constraining models of biogeochemical cycling and Earth surface evolution. Corg fate is dependent on both intrinsic characteristics (molecular structure, matrix) and the environmental conditions to which fluvial Corg is subjected. Three distinct patterns are evident on continental margins supplied by rivers: (a) high-energy, mobile muds with enhanced oxygen exposure and efficient metabolite exchange have very low preservation of both terrestrial and marine Corg (e.g., Amazon subaqueous delta); (b) low-energy facies with extreme accumulation have high Corg preservation (e.g., Ganges-Brahmaputra); and (c) small, mountainous river systems that sustain average accumulation rates but deliver a large fraction of low-reactivity, fossil Corg in episodic events have the highest preservation efficiencies. The global patterns of terrestrial Corg preservation reflect broadly different roles for passive and active margin systems in the sedimentary Corg cycle.


Asunto(s)
Carbono/química , Ciclo del Carbono , Ambiente , Sedimentos Geológicos , Océanos y Mares
3.
J Agric Food Chem ; 53(2): 197-201, 2005 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-15656648

RESUMEN

Monosodium glutamate (MSG) obtained as trade samples from several manufacturers was studied to determine the range of its intramolecular 13C/12C composition. Although the carbon isotopic composition of the total MSG molecule did not differ among manufacturers in most instances, significant differences were observed in the isotopic composition of the alpha-carboxyl carbon, suggesting that different proprietary strains of industrial microorganisms or MSG purification methods may impart unique isotopic fingerprints upon their products. The 13C depletion of the alpha-carboxyl carbon relative to the rest of the molecule helps constrain the identity of the potential anapleurotic carboxylating enzymes responsible for its fixation.


Asunto(s)
Isótopos de Carbono/análisis , Glutamato de Sodio/química , Bacterias/metabolismo , Carbono/análisis , Industria de Alimentos , Glutamato de Sodio/aislamiento & purificación
4.
Oecologia ; 139(2): 178-89, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14986094

RESUMEN

A survey of the intramolecular C isotopic composition of a variety of organisms was conducted to investigate the potential of intramolecular isotopic measurements as a tracer of biological or geochemical processes. Based on a consideration of inorganic C sources and enzymatic fractionations, contrasting predictions were made for the relative (13)C enrichments of the alpha-carboxyl carbons fixed by the anapleurotic (beta)-carboxylation pathway during amino acid synthesis by photoautotrophs and heterotrophs. To test the model predictions, the stable C isotopic compositions of the acid hydrolyzable C fraction, the total amino acid alpha-carboxyl C fraction and the alpha-carboxyl C of glutamate from a variety of autotrophic and heterotrophic organisms were compared. The relative (13)C enrichments of carboxyl carbons in the bulk amino acid fraction and in glutamate conformed qualitatively to model predictions. Macroalgal taxa possessed a significantly less enriched carboxyl C fraction than did either C3 or C4 vascular plants, indicating the presence of a different beta-carboxylation pathway operating in these organisms. In most multicellular heterotrophs, the isotopic composition of the amino acid carboxyl carbons closely resembled that of their food sources. Amino acids are apparently assimilated into tissue proteins directly from their diets without significant metabolic modification. However, shifts in the isotopic composition of the carboxyl C fractions in some organisms were detected that were consistent with the occurrence of significant resynthesis of amino acids from non-amino acid precursors. Comparison of plant leaves and roots provided evidence of environmentally controlled assimilate partitioning. Intramolecular isotopic measurements of biological molecules provide unique insights into the origins and transformations of bio-molecules.


Asunto(s)
Aminoácidos/química , Carbono/química , Modelos Teóricos , Animales , Carbono/análisis , Isótopos de Carbono/análisis , Eucariontes , Invertebrados , Poaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA