Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Cell ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38964326

RESUMEN

The human seasonal coronavirus HKU1-CoV, which causes common colds worldwide, relies on the sequential binding to surface glycans and transmembrane serine protease 2 (TMPRSS2) for entry into target cells. TMPRSS2 is synthesized as a zymogen that undergoes autolytic activation to process its substrates. Several respiratory viruses, in particular coronaviruses, use TMPRSS2 for proteolytic priming of their surface spike protein to drive membrane fusion upon receptor binding. We describe the crystal structure of the HKU1-CoV receptor binding domain in complex with TMPRSS2, showing that it recognizes residues lining the catalytic groove. Combined mutagenesis of interface residues and comparison across species highlight positions 417 and 469 as determinants of HKU1-CoV host tropism. The structure of a receptor-blocking nanobody in complex with zymogen or activated TMPRSS2 further provides the structural basis of TMPRSS2 activating conformational change, which alters loops recognized by HKU1-CoV and dramatically increases binding affinity.

2.
NPJ Vaccines ; 9(1): 102, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858404

RESUMEN

We recently developed an immuno-oncotherapy against human papillomavirus (HPV)-induced tumors based on a lentiviral vector encoding the Early E6 and E7 oncoproteins of HPV16 and HPV18 genotypes, namely "Lenti-HPV-07". The robust and long-lasting anti-tumor efficacy of Lenti-HPV-07 is dependent on CD8+ T-cell induction and remodeling of the tumor microenvironment. Here, we first established that anti-vector immunity induced by Lenti-HPV-07 prime has no impact on the efficacy of a homologous boost to amplify anti-HPV T-cell immunity. To longitudinally monitor the evolution of the T-cell repertoire generated after the prime, homologous or heterologous boost with Lenti-HPV-07, we tracked T-cell clonotypes by deep sequencing of T-Cell Receptor (TCR) variable ß and α chain mRNA, applied to whole peripheral blood cells (PBL) and a T cell population specific of an immunodominant E7HPV16 epitope. We observed a hyper-expansion of clonotypes post prime, accompanied by increased frequencies of HPV-07-specific T cells. Additionally, there was a notable diversification of clonotypes post boost in whole PBL, but not in the E7HPV16-specific T cells. We then demonstrated that the effector functions of such Lenti-HPV-07-induced T cells synergize with anti-checkpoint inhibitory treatments by systemic administration of anti-TIM3 or anti-NKG2A monoclonal antibodies. While Lenti-HPV-07 is about to enter a Phase I/IIa clinical trial, these results will help better elucidate its mode of action in immunotherapy against established HPV-mediated malignancies.

3.
J Clin Med ; 13(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38337495

RESUMEN

The present review discusses restrictive perioperative fluid protocols within enhanced recovery after surgery (ERAS) pathways. Standardized definitions of a restrictive or liberal fluid regimen are lacking since they depend on conflicting evidence, institutional protocols, and personal preferences. Challenges related to restrictive fluid protocols are related to proper patient selection within standardized ERAS protocols. On the other hand, invasive goal-directed fluid therapy (GDFT) is reserved for more challenging disease presentations and polymorbid and frail patients. While the perfusion rate (mL/kg/h) appears less predictive for postoperative outcomes, the authors identified critical thresholds related to total intravenous fluids and weight gain. These thresholds are discussed within the available evidence. The authors aim to introduce their institutional approach to standardized practice.

4.
Nature ; 624(7990): 207-214, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37879362

RESUMEN

Four endemic seasonal human coronaviruses causing common colds circulate worldwide: HKU1, 229E, NL63 and OC43 (ref. 1). After binding to cellular receptors, coronavirus spike proteins are primed for fusion by transmembrane serine protease 2 (TMPRSS2) or endosomal cathepsins2-9. NL63 uses angiotensin-converting enzyme 2 as a receptor10, whereas 229E uses human aminopeptidase-N11. HKU1 and OC43 spikes bind cells through 9-O-acetylated sialic acid, but their protein receptors remain unknown12. Here we show that TMPRSS2 is a functional receptor for HKU1. TMPRSS2 triggers HKU1 spike-mediated cell-cell fusion and pseudovirus infection. Catalytically inactive TMPRSS2 mutants do not cleave HKU1 spike but allow pseudovirus infection. Furthermore, TMPRSS2 binds with high affinity to the HKU1 receptor binding domain (Kd 334 and 137 nM for HKU1A and HKU1B genotypes) but not to SARS-CoV-2. Conserved amino acids in the HKU1 receptor binding domain are essential for binding to TMPRSS2 and pseudovirus infection. Newly designed anti-TMPRSS2 nanobodies potently inhibit HKU1 spike attachment to TMPRSS2, fusion and pseudovirus infection. The nanobodies also reduce infection of primary human bronchial cells by an authentic HKU1 virus. Our findings illustrate the various evolution strategies of coronaviruses, which use TMPRSS2 to either directly bind to target cells or prime their spike for membrane fusion and entry.


Asunto(s)
Betacoronavirus , Receptores Virales , Serina Endopeptidasas , Glicoproteína de la Espiga del Coronavirus , Humanos , Betacoronavirus/metabolismo , Bronquios/citología , Bronquios/virología , Resfriado Común/tratamiento farmacológico , Resfriado Común/virología , Fusión de Membrana , Receptores Virales/metabolismo , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/uso terapéutico , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
5.
Front Immunol ; 14: 1208041, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37654495

RESUMEN

Dengue virus (DENV) is responsible for approximately 100 million cases of dengue fever annually, including severe forms such as hemorrhagic dengue and dengue shock syndrome. Despite intensive vaccine research and development spanning several decades, a universally accepted and approved vaccine against dengue fever has not yet been developed. The major challenge associated with the development of such a vaccine is that it should induce simultaneous and equal protection against the four DENV serotypes, because past infection with one serotype may greatly increase the severity of secondary infection with a distinct serotype, a phenomenon known as antibody-dependent enhancement (ADE). Using a lentiviral vector platform that is particularly suitable for the induction of cellular immune responses, we designed a tetravalent T-cell vaccine candidate against DENV ("LV-DEN"). This vaccine candidate has a strong CD8+ T-cell immunogenicity against the targeted non-structural DENV proteins, without inducing antibody response against surface antigens. Evaluation of its protective potential in the preclinical flavivirus infection model, i.e., mice knockout for the receptor to the type I IFN, demonstrated its significant protective effect against four distinct DENV serotypes, based on reduced weight loss, viremia, and viral loads in peripheral organs of the challenged mice. These results provide proof of concept for the use of lentiviral vectors for the development of efficient polyvalent T-cell vaccine candidates against all DENV serotypes.


Asunto(s)
Virus del Dengue , Dengue Grave , Animales , Ratones , Vacunas Combinadas , Linfocitos T CD8-positivos , Acrecentamiento Dependiente de Anticuerpo
6.
EMBO Mol Med ; 15(10): e17723, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37675835

RESUMEN

Human papillomavirus (HPV) infections are the cause of all cervical and numerous oropharyngeal and anogenital cancers. The currently available HPV vaccines, which induce neutralizing antibodies, have no therapeutic effect on established tumors. Here, we developed an immuno-oncotherapy against HPV-induced tumors based on a non-integrative lentiviral vector encoding detoxified forms of the Early E6 and E7 oncoproteins of HPV16 and 18 genotypes, namely, "Lenti-HPV-07". A single intramuscular injection of Lenti-HPV-07 into mice bearing established HPV-induced tumors resulted in complete tumor eradication in 100% of the animals and was also effective against lung metastases. This effect correlated with CD8+ T-cell induction and profound remodeling of the tumor microenvironment. In the intra-tumoral infiltrates of vaccinated mice, the presence of large amounts of activated effector, resident memory, and transcription factor T cell factor-1 (TCF-1)+ "stem-like" CD8+ T cells was associated with full tumor eradication. The Lenti-HPV-07-induced immunity was long-lasting and prevented tumor growth after a late re-challenge, mimicking tumor relapse. Lenti-HPV-07 therapy synergizes with an anti-checkpoint inhibitory treatment and therefore shows promise as an immuno-oncotherapy against established HPV-mediated malignancies.

7.
Front Immunol ; 14: 1083218, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793723

RESUMEN

Myasthenia Gravis (MG) is a neurological autoimmune disease characterized by disabling muscle weaknesses due to anti-acetylcholine receptor (AChR) autoantibodies. To gain insight into immune dysregulation underlying early-onset AChR+ MG, we performed an in-depth analysis of peripheral mononuclear blood cells (PBMCs) using mass cytometry. PBMCs from 24 AChR+ MG patients without thymoma and 16 controls were stained with a panel of 37 antibodies. Using both unsupervised and supervised approaches, we observed a decrease in monocytes, for all subpopulations: classical, intermediate, and non-classical monocytes. In contrast, an increase in innate lymphoid cells 2 (ILC2s) and CD27- γδ T cells was observed. We further investigated the dysregulations affecting monocytes and γδ T cells in MG. We analyzed CD27- γδ T cells in PBMCs and thymic cells from AChR+ MG patients. We detected the increase in CD27- γδ T cells in thymic cells of MG patients suggesting that the inflammatory thymic environment might affect γδ T cell differentiation. To better understand changes that might affect monocytes, we analyzed RNA sequencing data from CD14+ PBMCs and showed a global decrease activity of monocytes in MG patients. Next, by flow cytometry, we especially confirmed the decrease affecting non-classical monocytes. In MG, as for other B-cell mediated autoimmune diseases, dysregulations are well known for adaptive immune cells, such as B and T cells. Here, using single-cell mass cytometry, we unraveled unexpected dysregulations for innate immune cells. If these cells are known to be crucial for host defense, our results demonstrated that they could also be involved in autoimmunity.


Asunto(s)
Miastenia Gravis , Enfermedades del Sistema Nervioso , Neoplasias del Timo , Humanos , Inmunidad Innata , Linfocitos , Receptores Colinérgicos , Autoanticuerpos
8.
Medicine (Baltimore) ; 101(35): e30258, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36107599

RESUMEN

INTRODUCTION: To evaluate Enhanced recovery after surgery (ERAS®) protocol on oncological outcomes for patients treated with radical cystectomy (RC) for urothelial carcinoma of the bladder (UCB). METHODS: A prospectively maintained single-institutional database comprising 160 consecutive UCB patients who underwent open RC from 2012 to 2020 was analyzed. Patients receiving chemotherapy and those with a urinary diversion other than ileal conduit were excluded. Patients were divided into two groups according to the perioperative management (ERAS® and pre-ERAS®). The study aimed to evaluate the impact of the ERAS® protocol on survival at five years after surgery using a Kaplan-Meier log-rank test. A multivariable Cox proportional hazards model was used to identify prognostic factors for cancer-specific (CSS) and overall survival (OS). RESULTS: Of the 107 patients considered for the final analysis, 74 (69%) were included in the ERAS® group. Median follow-up for patients alive at last follow-up was 28 months (interquartile range [IQR] 12-48). Five-years CSS rate was 74% for ERAS® patients, compared to 48% for the control population (P = 0.02), while 5-years OS was 31% higher in the ERAS® (67% vs. 36%, P = .003). In the multivariable analysis, ERAS® protocol and tumor stage were independent factors of CSS, while ERAS®, tumor stage so as total blood loss were independent factors for OS. DISCUSSION: A dedicated ERAS® protocol for UCB patients treated with RC has a significant impact on survival. Reduction of stress after a major surgery and its potential improvement of perioperative patient's immunity may explain these data.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Carcinoma de Células Transicionales/cirugía , Estudios de Cohortes , Cistectomía/métodos , Humanos , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/patología
9.
Mucosal Immunol ; 15(6): 1389-1404, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-36104497

RESUMEN

Most viral vectors, including the potently immunogenic lentiviral vectors (LVs), only poorly direct antigens to the MHC-II endosomal pathway and elicit CD4+ T cells. We developed a new generation of LVs encoding antigen-bearing monomers of collectins substituted at their C-terminal domain with the CD40 ligand ectodomain to target and activate antigen-presenting cells. Host cells transduced with such optimized LVs secreted soluble collectin-antigen polymers with the potential to be endocytosed in vivo and reach the MHC-II pathway. In the murine tuberculosis model, such LVs induced efficient MHC-II antigenic presentation and triggered both CD8+ and CD4+ T cells at the systemic and mucosal levels. They also conferred a significant booster effect, consistent with the importance of CD4+ T cells for protection against Mycobacterium tuberculosis. Given the pivotal role of CD4+ T cells in orchestrating innate and adaptive immunity, this strategy could have a broad range of applications in the vaccinology field.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Ratones , Animales , Células Dendríticas , Ratones Endogámicos C57BL , Vectores Genéticos/genética
10.
Cell Rep ; 40(4): 111142, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35905717

RESUMEN

Lentiviral vectors (LVs) are highly efficient at inducing CD8+ T cell responses. However, LV-encoded antigens are processed inside the cytosol of antigen-presenting cells, which does not directly communicate with the endosomal major histocompatibility complex class II (MHC-II) presentation pathway. LVs are thus poor at inducing CD4+ T cell response. To overcome this limitation, we devised a strategy whereby LV-encoded antigens are extended at their N-terminal end with the MHC-II-associated light invariant chain (li), which contains an endosome-targeting signal sequence. When evaluated with an LV-encoded polyantigen composed of CD4+ T cell targets from Mycobacterium tuberculosis, intranasal vaccination in mice triggers pulmonary polyfunctional CD4+ and CD8+ T cell responses. Adjuvantation of these LVs extends the mucosal immunity to Th17 and Tc17 responses. A systemic prime and an intranasal boost with one of these LV induces protection against M. tuberculosis. This strategy improves the protective power of LVs against infections and cancers, where CD4+ T cell immunity plays an important role.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Mycobacterium tuberculosis , Animales , Antígenos Bacterianos , Antígenos de Diferenciación de Linfocitos B , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Vectores Genéticos , Lentivirus , Ratones , Ratones Endogámicos C57BL , Mycobacteriaceae
11.
Opt Lett ; 47(14): 3543-3546, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838723

RESUMEN

The LED-pumping technology is used for the first time, to the best of our knowledge, to develop a complete master oscillator power amplifier (MOPA) system including a multipass amplifier. A pumping head using an original slab architecture is developed integrating a Cr:LiSAF slab pumped by 2112 blue LEDs via a Ce:YAG luminescent concentrator. The slab configuration enables the reaching of a large number of passes-up to 22-together with access to efficient cooling, allowing for a repetition rate scale up. For 22 passes, the amplifier delivers pulses with energy up to 2.4 mJ at 10-Hz repetition rate with a gain of 4.36 at 825 nm. A complete study of the MOPA is described, concluding in nearly constant performances versus the repetition rate, up to 100 Hz.

12.
Mol Ther ; 30(9): 2984-2997, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35484842

RESUMEN

As the coronavirus disease 2019 (COVID-19) pandemic continues and new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern emerge, the adaptive immunity initially induced by the first-generation COVID-19 vaccines starts waning and needs to be strengthened and broadened in specificity. Vaccination by the nasal route induces mucosal, humoral, and cellular immunity at the entry point of SARS-CoV-2 into the host organism and has been shown to be the most effective for reducing viral transmission. The lentiviral vaccination vector (LV) is particularly suitable for this route of immunization owing to its non-cytopathic, non-replicative, and scarcely inflammatory properties. Here, to set up an optimized cross-protective intranasal booster against COVID-19, we generated an LV encoding stabilized spike of SARS-CoV-2 Beta variant (LV::SBeta-2P). mRNA vaccine-primed and -boosted mice, with waning primary humoral immunity at 4 months after vaccination, were boosted intranasally with LV::SBeta-2P. A strong boost effect was detected on cross-sero-neutralizing activity and systemic T cell immunity. In addition, mucosal anti-spike IgG and IgA, lung-resident B cells, and effector memory and resident T cells were efficiently induced, correlating with complete pulmonary protection against the SARS-CoV-2 Delta variant, demonstrating the suitability of the LV::SBeta-2P vaccine candidate as an intranasal booster against COVID-19. LV::SBeta-2P vaccination was also fully protective against Omicron infection of the lungs and central nervous system, in the highly susceptible B6.K18-hACE2IP-THV transgenic mice.


Asunto(s)
COVID-19 , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Pulmón , Ratones , Membrana Mucosa , SARS-CoV-2/genética , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
13.
Sci Transl Med ; 14(633): eabg3083, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35196024

RESUMEN

The mechanisms underlying operational tolerance after hematopoietic stem cell transplantation in humans are poorly understood. We studied two independent cohorts of patients who underwent allogeneic hematopoietic stem cell transplantation from human leukocyte antigen-identical siblings. Primary tolerance was associated with long-lasting reshaping of the recipients' immune system compared to their healthy donors with an increased proportion of regulatory T cell subsets and decreased T cell activation, proliferation, and migration. Transcriptomics profiles also identified a role for nicotinamide adenine dinucleotide biosynthesis in the regulation of immune cell functions. We then compared individuals with operational tolerance and nontolerant recipients at the phenotypic, transcriptomic, and metabolomic level. We observed alterations centered on CD38+-activated T and B cells in nontolerant patients. In tolerant patients, cell subsets with regulatory functions were prominent. RNA sequencing analyses highlighted modifications in the tolerant patients' transcriptomic profiles, particularly with overexpression of the ectoenzyme NT5E (encoding CD73), which could counterbalance CD38 enzymatic functions by producing adenosine. Further, metabolomic analyses suggested a central role of androgens in establishing operational tolerance. These data were confirmed using an integrative approach to evaluating the immune landscape associated with operational tolerance. Thus, balance between a CD38-activated immune state and CD73-related production of adenosine may be a key regulator of operational tolerance.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Tolerancia Inmunológica , Antígenos HLA , Humanos , Tolerancia al Trasplante/genética
14.
iScience ; 25(1): 103566, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34984326

RESUMEN

CD4+ T follicular helper cells (Tfh) promote B cell maturation and antibody production in secondary lymphoid organs. By using an innovative culture system based on splenocyte stimulation, we studied the dynamics of naive and memory CD4+ T cells during the generation of a Tfh cell response. We found that both naive and memory CD4+ T cells can acquire phenotypic and functional features of Tfh cells. Moreover, we show here that the transition of memory as well as naive CD4+ T cells into the Tfh cell profile is supported by the expression of pro-Tfh genes, including transcription factors known to orchestrate Tfh cell development. Using this culture system, we provide pieces of evidence that HIV infection differentially alters these newly identified pathways of Tfh cell generation. Such diversity in pathways of Tfh cell generation offers a new framework for the understanding of Tfh cell responses in physiological and pathological contexts.

15.
Vaccines (Basel) ; 11(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36679857

RESUMEN

Following the breakthrough of numerous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in recent months and the incomplete efficiency of the currently available vaccines, development of more effective vaccines is desirable. Non-integrative, non-cytopathic and non-inflammatory lentiviral vectors elicit sterilizing prophylaxis against SARS-CoV-2 in preclinical animal models and are particularly suitable for mucosal vaccination, which is acknowledged as the most effective in reducing viral transmission. Here, we demonstrate that a single intranasal administration of a vaccinal lentiviral vector encoding a stabilized form of the original SARS-CoV-2 Spike glycoprotein induces full-lung protection of respiratory tracts and strongly reduces pulmonary inflammation in the susceptible Syrian golden hamster model against the prototype SARS-CoV-2. In addition, we show that a lentiviral vector encoding stabilized Spike of SARS-CoV-2 Beta variant (LV::SBeta-2P) prevents pathology and reduces infectious viral loads in lungs and nasal turbinates following inoculation with the SARS-CoV-2 Omicron variant. Importantly, an intranasal boost with LV::SBeta-2P improves cross-seroneutralization much better in LV::SBeta-2P-primed hamsters than in their counterparts primed with an LV-encoding Spike from the ancestral SARS-CoV-2. These results strongly suggest that an immune imprint with the original Spike sequence has a negative impact on cross-protection against new variants. Our results tackle the issue of vaccine effectiveness in people who have already been vaccinated and have vanished immunity and indicate the efficiency of LV-based intranasal vaccination, either as a single dose or as booster.

16.
EMBO Mol Med ; 13(12): e14459, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34647691

RESUMEN

COVID-19 vaccines already in use or in clinical development may have reduced efficacy against emerging SARS-CoV-2 variants. In addition, although the neurotropism of SARS-CoV-2 is well established, the vaccine strategies currently developed have not taken into account protection of the central nervous system. Here, we generated a transgenic mouse strain expressing the human angiotensin-converting enzyme 2, and displaying unprecedented brain permissiveness to SARS-CoV-2 replication, in addition to high permissiveness levels in the lung. Using this stringent transgenic model, we demonstrated that a non-integrative lentiviral vector, encoding for the spike glycoprotein of the ancestral SARS-CoV-2, used in intramuscular prime and intranasal boost elicits sterilizing protection of lung and brain against both the ancestral virus, and the Gamma (P.1) variant of concern, which carries multiple vaccine escape mutations. Beyond induction of strong neutralizing antibodies, the mechanism underlying this broad protection spectrum involves a robust protective T-cell immunity, unaffected by the recent mutations accumulated in the emerging SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Encéfalo/metabolismo , Vacunas contra la COVID-19 , Humanos , Ratones , Ratones Transgénicos , Glicoproteína de la Espiga del Coronavirus/metabolismo
17.
Sci Adv ; 7(34)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34407944

RESUMEN

The COVID-19 pandemic has spread worldwide, yet the role of antiviral T cell immunity during infection and the contribution of immune checkpoints remain unclear. By prospectively following a cohort of 292 patients with melanoma, half of which treated with immune checkpoint inhibitors (ICIs), we identified 15 patients with acute or convalescent COVID-19 and investigated their transcriptomic, proteomic, and cellular profiles. We found that ICI treatment was not associated with severe COVID-19 and did not alter the induction of inflammatory and type I interferon responses. In-depth phenotyping demonstrated expansion of CD8 effector memory T cells, enhanced T cell activation, and impaired plasmablast induction in ICI-treated COVID-19 patients. The evaluation of specific adaptive immunity in convalescent patients showed higher spike (S), nucleoprotein (N), and membrane (M) antigen-specific T cell responses and similar induction of spike-specific antibody responses. Our findings provide evidence that ICI during COVID-19 enhanced T cell immunity without exacerbating inflammation.


Asunto(s)
COVID-19/inmunología , Inhibidores de Puntos de Control Inmunológico/inmunología , Melanoma/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Inmunidad Adaptativa/efectos de los fármacos , Inmunidad Adaptativa/inmunología , Anciano , Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , COVID-19/complicaciones , COVID-19/virología , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Memoria Inmunológica/efectos de los fármacos , Memoria Inmunológica/inmunología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Masculino , Melanoma/complicaciones , Melanoma/tratamiento farmacológico , Persona de Mediana Edad , Estudios Prospectivos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/virología
18.
J Immunol ; 207(5): 1333-1343, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34408012

RESUMEN

Zika virus (ZIKV) is a mosquito-borne flavivirus that has emerged as a global concern because of its impact on human health. ZIKV infection during pregnancy can cause microcephaly and other severe brain defects in the developing fetus and there have been reports of the occurrence of Guillain-Barré syndrome in areas affected by ZIKV. NK cells are activated during acute viral infections and their activity contributes to a first line of defense because of their ability to rapidly recognize and kill virus-infected cells. To provide insight into NK cell function during ZIKV infection, we have profiled, using mass cytometry, the NK cell receptor-ligand repertoire in a cohort of acute ZIKV-infected female patients. Freshly isolated NK cells from these patients contained distinct, activated, and terminally differentiated, subsets expressing higher levels of CD57, NKG2C, and KIR3DL1 as compared with those from healthy donors. Moreover, KIR3DL1+ NK cells from these patients produced high levels of IFN-γ and TNF-α, in the absence of direct cytotoxicity, in response to in vitro stimulation with autologous, ZIKV-infected, monocyte-derived dendritic cells. In ZIKV-infected patients, overproduction of IFN-γ correlated with STAT-5 activation (r = 0.6643; p = 0.0085) and was mediated following the recognition of MHC class 1-related chain A and chain B molecules expressed by ZIKV-infected monocyte-derived dendritic cells, in synergy with IL-12 production by the latter cells. Together, these findings suggest that NK cells contribute to the generation of an efficacious adaptive anti-ZIKV immune response that could potentially affect the outcome of the disease and/or the development of persistent symptoms.


Asunto(s)
Células Asesinas Naturales/inmunología , Infección por el Virus Zika/inmunología , Virus Zika/fisiología , Enfermedad Aguda , Células Cultivadas , Estudios de Cohortes , Femenino , Humanos , Interferón gamma/metabolismo , Interleucina-12/metabolismo , Activación de Linfocitos , Embarazo , Receptores KIR3DL1/metabolismo , Factor de Transcripción STAT5/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
20.
Cell Host Microbe ; 29(2): 236-249.e6, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33357418

RESUMEN

To develop a vaccine candidate against coronavirus disease 2019 (COVID-19), we generated a lentiviral vector (LV) eliciting neutralizing antibodies against the Spike glycoprotein of SARS-CoV-2. Systemic vaccination by this vector in mice, in which the expression of the SARS-CoV-2 receptor hACE2 has been induced by transduction of respiratory tract cells by an adenoviral vector, confers only partial protection despite high levels of serum neutralizing activity. However, eliciting an immune response in the respiratory tract through an intranasal boost results in a >3 log10 decrease in the lung viral loads and reduces local inflammation. Moreover, both integrative and non-integrative LV platforms display strong vaccine efficacy and inhibit lung deleterious injury in golden hamsters, which are naturally permissive to SARS-CoV-2 replication and closely mirror human COVID-19 physiopathology. Our results provide evidence of marked prophylactic effects of LV-based vaccination against SARS-CoV-2 and designate intranasal immunization as a powerful approach against COVID-19.


Asunto(s)
Administración Intranasal/métodos , Vacunas contra la COVID-19/administración & dosificación , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Cricetinae , Femenino , Vectores Genéticos , Inmunidad Mucosa , Inmunización Secundaria , Inmunoglobulina A/inmunología , Lentivirus/genética , Lentivirus/inmunología , Masculino , Ratones , Modelos Animales , Sistema Respiratorio/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA