Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834529

RESUMEN

Dissolved inorganic phosphorus (DIP) is a limiting nutrient in the physiology of scleractinian corals. Anthropogenic addition of dissolved inorganic nitrogen (DIN) to coastal reefs increases the seawater DIN:DIP ratio and further increases P limitation, which is detrimental to coral health. The effects of imbalanced DIN:DIP ratios on coral physiology require further investigation in coral species other than the most studied branching corals. Here we investigated the nutrient uptake rates, elemental tissue composition and physiology of a foliose stony coral, Turbinaria reniformis, and a soft coral, Sarcophyton glaucum, exposed to four different DIN: DIP ratios (0.5:0.2, 0.5:1, 3:0.2, 3:1). The results show that T. reniformis had high uptake rates of DIN and DIP, proportional to the seawater nutrient concentrations. DIN enrichment alone led to an increase in tissue N content, shifting the tissue N:P ratio towards P limitation. However, S. glaucum had 5 times lower uptake rates and only took up DIN when the seawater was simultaneously enriched with DIP. This double uptake of N and P did not alter tissue stoichiometry. This study allows us to better understand the susceptibility of corals to changes in the DIN:DIP ratio and predict how coral species will respond under eutrophic conditions in the reef.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Nutrientes , Nitrógeno/farmacología
2.
Sci Total Environ ; 858(Pt 2): 159944, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351498

RESUMEN

Phosphorus (P) is an essential but limiting nutrient for coral growth due to low concentrations of dissolved inorganic concentrations (DIP) in reef waters. P limitation is often exacerbated when concentrations of dissolved inorganic nitrogen (DIN) increase in the reef. To increase their access to phosphorus, corals can use organic P dissolved in seawater (DOP). They possess phosphatase enzymes that transform DOP into DIP, which can then be taken up by coral symbionts. Although the concentration of DOP in reef waters is much higher than DIP, the dependence of corals on this P source is still poorly understood, especially with different concentrations of DIN in seawater. As efforts to predict the future of corals increase, improved knowledge of the P requirements of corals living under different DIN concentrations may be key to predicting coral health. In this study, we investigated P content and phosphatase activities (PAs) in Stylophora pistillata maintained under nutrient starvation, long-term nitrogen enrichment (nitrate or ammonium at 2 µM) and short-term (few hours) nitrogen pulses. Results show that under nutrient depletion and ammonium-enriched conditions, a significant increase in PAs was observed compared to control conditions, with no change in the N:P ratio of the coral tissue. On the contrary, under nitrate enrichment, there was no increase in PAs compared to control conditions, but an increase in the N:P ratio of the coral tissue. These results suggest that under nitrate enrichment, corals were unable to increase their ability to rely on DOP and replenish their cellular P content. An increase in cellular N:P ratio is detrimental to coral health as it increases the susceptibility of coral bleaching under thermal stress. These results provide an overall view of the P requirements of corals exposed to different nutrient conditions and improve our understanding of the effects of nitrogen enrichment on corals.


Asunto(s)
Compuestos de Amonio , Antozoos , Dinoflagelados , Animales , Simbiosis , Nitratos , Materia Orgánica Disuelta , Nitrógeno , Fósforo , Compuestos Orgánicos , Nutrientes , Óxidos de Nitrógeno , Monoéster Fosfórico Hidrolasas , Arrecifes de Coral
3.
Glob Chang Biol ; 28(7): 2341-2359, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34981609

RESUMEN

Climate change-related increase in seawater temperature has become a leading cause of coral bleaching and mortality. However, corals from the northern Red Sea show high thermal tolerance and no recorded massive bleaching event. This specific region is frequently subjected to intense dust storms, coming from the surrounding arid deserts, which are expected to increase in frequency and intensity in the future. The aerial dust deposition supplies essential bioelements to the water column. Here, we investigated the effect of dust deposition on the physiology of a Red Sea coral, Stylophora pistillata. We measured the modifications in coral and Symbiodiniaceae metallome (cellular metal content), as well as the changes in photosynthesis and oxidative stress status of colonies exposed during few weeks to dust deposition. Our results show that 1 mg L-1 of dust supplied nanomolar amounts of nitrate and other essential bioelements, such as iron, manganese, zinc and copper, rapidly assimilated by the symbionts. At 25°C, metal bioaccumulation enhanced the chlorophyll concentration and photosynthesis of dust-exposed corals compared to control corals. These results suggest that primary production was limited by metal availability in seawater. A 5°C increase in seawater temperature enhanced iron assimilation in both control and dust-enriched corals. Temperature rise increased the photosynthesis of control corals only, dust-exposed ones having already reached maximal photosynthesis rates at 25°C. Finally, we observed a combined effect of temperature and bioelement concentration on the assimilation of molybdenum, cadmium, manganese and copper, which were in higher concentrations in symbionts of dust-exposed corals maintained at 30°C. All together these observations highlight the importance of dust deposition in the supply of essential bioelements, such as iron, to corals and its role in sustaining coral productivity in Red Sea reefs.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Cobre , Arrecifes de Coral , Polvo , Océano Índico , Hierro , Manganeso , Metales , Simbiosis
4.
Mar Pollut Bull ; 167: 112257, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33756374

RESUMEN

Reef ecosystems are under increasing pressure from global and local stressors. Rising seawater temperature and high ultraviolet radiation (UVR) levels are the main drivers of the disruption of the coral-dinoflagellate symbiosis (bleaching). Bleaching can also be exacerbated by nitrate contamination in coastal reefs. However, the underlying physiological mechanisms are still poorly understood. Here, we assessed the physiological and oxidative state of the scleractinian coral Pocillopora damicornis, maintained eight weeks in a crossed-factorial design including two temperatures (26 °C or 30 °C), and two nitrate (0.5 and 3 µM-enriched), and UVR (no UVR and 25/1.5 Wm-2 UVA/B) levels. Nitrate enrichment, and high temperature, significantly impaired coral photosynthesis. However, UVR alleviated the nitrate and temperature-induced decrease in photosynthesis, by increasing the coral's antioxidant capacity. The present study contributes to our understanding of the combined effects of abiotic stressors on coral bleaching susceptibility. Such information is urgently needed to refine reef management strategies.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Ecosistema , Nitratos , Fotosíntesis , Simbiosis , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA