Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Public Health ; 24(1): 1199, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38684999

RESUMEN

BACKGROUND: The COVID-19 pandemic severely affected people's daily lives and health. Few studies have looked into the persistence of these changes. In the current study, we investigated to what extent changes in lifestyle and body weight were sustained after two years of restrictions. METHODS: We performed two representative online surveys among adults living in Germany. The first survey (S1) was performed in April 2021; the second survey (S2) in June 2022. The questionnaire focused on changes in physical activity, dietary habits, body weight, and mental stress levels. The data were weighted to optimally represent the general population of Germany. Using Chi-square tests, results were compared between the two surveys, and - per survey - between subgroups based on sociodemographic factors and mental stress levels. Furthermore, binomial logistic regression was performed to identify factors associated with weight gain. RESULTS: A total of 1,001 (S1) and 1,005 (S2) adults completed the survey, of which 50.4% were men and 49.6% were women in both surveys. Mean body mass index (BMI) at the time of the survey was 27.4 ± 6.0 kg/m2 (S1) and 27.1 ± 5.5 kg/m2 (S2). Reduced physical activity was reported by 52% of the participants in S1 and by 40% in S2 (p < .001). Moderate to severe stress was reported by 71% of the participants in S1 and by 62% in S2 (p < .001). Less healthy eating compared to before the pandemic was reported by 16% of the participants in S1 and by 12% in S2 (p = 0.033). Weight gain was reported by 40% of the participants in S1 and by 35% in S2 (p = 0.059). Weight gain was associated with higher BMI, reduced physical activity levels, less healthy nutrition and increased consumption of energy-dense food. CONCLUSIONS: Our results indicate that two years and three months after the start of the COVID-19 pandemic, the adverse effects on health-related lifestyle factors and body weight still existed, albeit to a lesser degree than directly after the first year of the pandemic. Targeted strategies are needed to better support the population subgroups most likely to change their lifestyle in unfavorable ways when faced with disruptions of their everyday lives.


Asunto(s)
Peso Corporal , COVID-19 , Estilo de Vida , Humanos , COVID-19/epidemiología , Masculino , Alemania/epidemiología , Femenino , Adulto , Estudios Transversales , Persona de Mediana Edad , Ejercicio Físico , Pandemias , Encuestas y Cuestionarios , Adulto Joven , Estrés Psicológico/epidemiología , Anciano , Conducta Alimentaria/psicología , Aumento de Peso , Índice de Masa Corporal , Adolescente
2.
J Magn Reson Imaging ; 55(4): 1120-1130, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34510612

RESUMEN

BACKGROUND: Pseudo-spiral Cartesian sampling with compressed sensing reconstruction has facilitated highly accelerated 4D flow magnetic resonance imaging (MRI) in various cardiovascular structures. However, unlike echo planar imaging (EPI)-accelerated 4D flow MRI, it has not been validated in whole-heart applications. HYPOTHESIS: Pseudo-spiral 4D flow MRI (PROUD [PROspective Undersampling in multiple Dimensions]) is comparable to EPI in robustness of valvular flow measurements and remains comparable as the undersampling factor is increased and scan time reduced. STUDY TYPE: Prospective. POPULATION: Twelve healthy subjects and eight patients with valvular regurgitation. FIELD STRENGTH/SEQUENCE: 3.0 T; PROUD and EPI 4D flow sequences, 2D flow and balanced steady-state free precession sequences. ASSESSMENT: Valvular blood flow was quantified using valve tracking. PROUD- and EPI-based measurements of aortic (AV) and pulmonary (PV) flow volumes and left and right ventricular stroke volumes were tested for agreement with 2D MRI-based measurements. PROUD reconstructions with undersampling factors (R) of 9, 14, 28, and 56 were tested for intervalve consistency (per valve, compared to the other valves) and preservation of peak velocities and E/A ratios. STATISTICAL TESTS: We used repeated measures ANOVA, Bland-Altman, Wilcoxon signed rank, and intraclass correlation coefficients. P < 0.05 was considered statistically significant. RESULTS: PROUD and EPI intervalve consistencies were not significantly different both in healthy subjects (valve-averaged mean difference [limits of agreement width]: 3.2 ± 0.8 [8.7 ± 1.1] mL/beat for PROUD, 5.5 ± 2.9 [13.7 ± 2.3] mL/beat for EPI, P = 0.07) and in patients with valvular regurgitation (2.3 ± 1.2 [15.3 ± 5.9] mL/beat for PROUD, 0.6 ± 0.6 [19.3 ± 2.9] mL/beat for EPI, P = 0.47). Agreement between EPI and PROUD was higher than between 4D flow (EPI or PROUD) and 2D MRI for forward flow, stroke volumes, and regurgitant volumes. Up to R = 28 in healthy subjects and R = 14 in patients with valvular regurgitation, PROUD intervalve consistency remained comparable to that of EPI. Peak velocities and E/A ratios were preserved up to R = 9. CONCLUSION: PROUD is comparable to EPI in terms of intervalve consistency and may be used with higher undersampling factors to shorten scan times further. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Imagen Eco-Planar , Imagen por Resonancia Magnética , Velocidad del Flujo Sanguíneo , Humanos , Imagenología Tridimensional/métodos , Estudios Prospectivos , Reproducibilidad de los Resultados , Volumen Sistólico , Función Ventricular Derecha
3.
Eur Heart J Cardiovasc Imaging ; 23(2): 154-165, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34143872

RESUMEN

Identification of flow patterns within the heart has long been recognized as a potential contribution to the understanding of physiological and pathophysiological processes of cardiovascular diseases. Although the pulsatile flow itself is multi-dimensional and multi-directional, current available non-invasive imaging modalities in clinical practice provide calculation of flow in only 1-direction and lack 3-dimensional volumetric velocity information. Four-dimensional flow cardiovascular magnetic resonance imaging (4D flow CMR) has emerged as a novel tool that enables comprehensive and critical assessment of flow through encoding velocity in all 3 directions in a volume of interest resolved over time. Following technical developments, 4D flow CMR is not only capable of visualization and quantification of conventional flow parameters such as mean/peak velocity and stroke volume but also provides new hemodynamic parameters such as kinetic energy. As a result, 4D flow CMR is being extensively exploited in clinical research aiming to improve understanding of the impact of cardiovascular disease on flow and vice versa. Of note, the analysis of 4D flow data is still complex and accurate analysis tools that deliver comparable quantification of 4D flow values are a necessity for a more widespread adoption in clinic. In this article, the acquisition and analysis processes are summarized and clinical applications of 4D flow CMR on the heart including conventional and novel hemodynamic parameters are discussed. Finally, clinical potential of other emerging intra-cardiac 4D flow imaging modalities is explored and a near-future perspective on 4D flow CMR is provided.


Asunto(s)
Sistema Cardiovascular , Interpretación de Imagen Asistida por Computador , Velocidad del Flujo Sanguíneo/fisiología , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética , Valor Predictivo de las Pruebas
4.
Front Bioeng Biotechnol ; 9: 725833, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869250

RESUMEN

Magnetic resonance imaging (MRI) can potentially be used for non-invasive screening of patients with stable angina pectoris to identify probable obstructive coronary artery disease. MRI-based coronary blood flow quantification has to date only been performed in a 2D fashion, limiting its clinical applicability. In this study, we propose a framework for coronary blood flow quantification using accelerated 4D flow MRI with respiratory motion correction and compressed sensing image reconstruction. We investigate its feasibility and repeatability in healthy subjects at rest. Fourteen healthy subjects received 8 times-accelerated 4D flow MRI covering the left coronary artery (LCA) with an isotropic spatial resolution of 1.0 mm3. Respiratory motion correction was performed based on 1) lung-liver navigator signal, 2) real-time monitoring of foot-head motion of the liver and LCA by a separate acquisition, and 3) rigid image registration to correct for anterior-posterior motion. Time-averaged diastolic LCA flow was determined, as well as time-averaged diastolic maximal velocity (VMAX) and diastolic peak velocity (VPEAK). 2D flow MRI scans of the LCA were acquired for reference. Scan-rescan repeatability and agreement between 4D flow MRI and 2D flow MRI were assessed in terms of concordance correlation coefficient (CCC) and coefficient of variation (CV). The protocol resulted in good visibility of the LCA in 11 out of 14 subjects (six female, five male, aged 28 ± 4 years). The other 3 subjects were excluded from analysis. Time-averaged diastolic LCA flow measured by 4D flow MRI was 1.30 ± 0.39 ml/s and demonstrated good scan-rescan repeatability (CCC/CV = 0.79/20.4%). Time-averaged diastolic VMAX (17.2 ± 3.0 cm/s) and diastolic VPEAK (24.4 ± 6.5 cm/s) demonstrated moderate repeatability (CCC/CV = 0.52/19.0% and 0.68/23.0%, respectively). 4D flow- and 2D flow-based diastolic LCA flow agreed well (CCC/CV = 0.75/20.1%). Agreement between 4D flow MRI and 2D flow MRI was moderate for both diastolic VMAX and VPEAK (CCC/CV = 0.68/20.3% and 0.53/27.0%, respectively). In conclusion, the proposed framework of accelerated 4D flow MRI equipped with respiratory motion correction and compressed sensing image reconstruction enables repeatable diastolic LCA flow quantification that agrees well with 2D flow MRI.

5.
J Magn Reson Imaging ; 54(2): 440-451, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33694310

RESUMEN

BACKGROUND: Respiratory gating is generally recommended in 4D flow MRI of the heart to avoid blurring and motion artifacts. Recently, a novel automated contact-less camera-based respiratory motion sensor has been introduced. PURPOSE: To compare camera-based respiratory gating (CAM) with liver-lung-navigator-based gating (NAV) and no gating (NO) for whole-heart 4D flow MRI. STUDY TYPE: Retrospective. SUBJECTS: Thirty two patients with a spectrum of cardiovascular diseases. FIELD STRENGTH/SEQUENCE: A 3T, 3D-cine spoiled-gradient-echo-T1-weighted-sequence with flow-encoding in three spatial directions. ASSESSMENT: Respiratory phases were derived and compared against each other by cross-correlation. Three radiologists/cardiologist scored images reconstructed with camera-based, navigator-based, and no respiratory gating with a 4-point Likert scale (qualitative analysis). Quantitative image quality analysis, in form of signal-to-noise ratio (SNR) and liver-lung-edge (LLE) for sharpness and quantitative flow analysis of the valves were performed semi-automatically. STATISTICAL TESTS: One-way repeated measured analysis of variance (ANOVA) with Wilks's lambda testing and follow-up pairwise comparisons. Significance level of P ≤ 0.05. Krippendorff's-alpha-test for inter-rater reliability. RESULTS: The respiratory signal analysis revealed that CAM and NAV phases were highly correlated (C = 0.93 ± 0.09, P < 0.01). Image scoring showed poor inter-rater reliability and no significant differences were observed (P ≥ 0.16). The image quality comparison showed that NAV and CAM were superior to NO with higher SNR (P = 0.02) and smaller LLE (P < 0.01). The quantitative flow analysis showed significant differences between the three respiratory-gated reconstructions in the tricuspid and pulmonary valves (P ≤ 0.05), but not in the mitral and aortic valves (P > 0.05). Pairwise comparisons showed that reconstructions without respiratory gating were different in flow measurements to either CAM or NAV or both, but no differences were found between CAM and NAV reconstructions. DATA CONCLUSION: Camera-based respiratory gating performed as well as conventional liver-lung-navigator-based respiratory gating. Quantitative image quality analysis showed that both techniques were equivalent and superior to no-gating-reconstructions. Quantitative flow analysis revealed local flow differences (tricuspid/pulmonary valves) in images of no-gating-reconstructions, but no differences were found between images reconstructed with camera-based and navigator-based respiratory gating. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Imagen por Resonancia Magnética , Técnicas de Imagen Sincronizada Respiratorias , Artefactos , Humanos , Imagenología Tridimensional , Reproducibilidad de los Resultados , Estudios Retrospectivos , Relación Señal-Ruido
6.
J Cardiovasc Magn Reson ; 23(1): 9, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588887

RESUMEN

BACKGROUND: Helices and vortices in thoracic aortic blood flow measured with 4D flow cardiovascular magnetic resonance (CMR) have been associated with aortic dilation and aneurysms. Current approaches are semi-quantitative or when fully quantitative based on 2D plane placement. In this study, we present a fully quantitative and three-dimensional approach to map and quantify abnormal velocity and wall shear stress (WSS) at peak systole in patients with a bicuspid aortic valve (BAV) of which 52% had a repaired coarctation. METHODS: 4D flow CMR was performed in 48 patients with BAV and in 25 healthy subjects at a spatiotemporal resolution of 2.5 × 2.5 × 2.5mm3/ ~ 42 ms and TE/TR/FA of 2.1 ms/3.4 ms/8° with k-t Principal Component Analysis factor R = 8. A 3D average of velocity and WSS direction was created for the normal subjects. Comparing BAV patient data with the 3D average map and selecting voxels deviating between 60° and 120° and > 120° yielded 3D maps and volume (in cm3) and surface (in cm2) quantification of abnormally directed velocity and WSS, respectively. Linear regression with Bonferroni corrected significance of P < 0.0125 was used to compare abnormally directed velocity volume and WSS surface in the ascending aorta with qualitative helicity and vorticity scores, with local normalized helicity (LNH) and quantitative vorticity and with patient characteristics. RESULTS: The velocity volumes > 120° correlated moderately with the vorticity scores (R ~ 0.50, P < 0.001 for both observers). For WSS surface these results were similar. The velocity volumes between 60° and 120° correlated moderately with LNH (R = 0.66) but the velocity volumes > 120° did not correlate with quantitative vorticity. For abnormal velocity and WSS deviating between 60° and 120°, moderate correlations were found with aortic diameters (R = 0.50-0.70). For abnormal velocity and WSS deviating > 120°, additional moderate correlations were found with age and with peak velocity (stenosis severity) and a weak correlation with gender. Ensemble maps showed that more than 60% of the patients had abnormally directed velocity and WSS. Additionally, abnormally directed velocity and WSS was higher in the proximal descending aorta in the patients with repaired coarctation than in the patients where coarctation was never present. CONCLUSION: The possibility to reveal directional abnormalities of velocity and WSS in 3D provides a new tool for hemodynamic characterization in BAV disease.


Asunto(s)
Aorta Torácica/diagnóstico por imagen , Coartación Aórtica/diagnóstico por imagen , Enfermedad de la Válvula Aórtica Bicúspide/diagnóstico por imagen , Angiografía por Resonancia Magnética , Imagen de Perfusión , Adulto , Aorta Torácica/fisiopatología , Coartación Aórtica/fisiopatología , Coartación Aórtica/cirugía , Enfermedad de la Válvula Aórtica Bicúspide/fisiopatología , Velocidad del Flujo Sanguíneo , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Flujo Sanguíneo Regional , Estrés Mecánico , Adulto Joven
7.
JACC Cardiovasc Imaging ; 14(7): 1354-1366, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33582060

RESUMEN

OBJECTIVES: This study determined: 1) the interobserver agreement; 2) valvular flow variation; and 3) which variables independently predicted the variation of valvular flow quantification from 4-dimensional (4D) flow cardiac magnetic resonance (CMR) with automated retrospective valve tracking at multiple sites. BACKGROUND: Automated retrospective valve tracking in 4D flow CMR allows consistent assessment of valvular flow through all intracardiac valves. However, due to the variance of CMR scanners and protocols, it remains uncertain if the published consistency holds for other clinical centers. METHODS: Seven sites each retrospectively or prospectively selected 20 subjects who underwent whole heart 4D flow CMR (64 patients and 76 healthy volunteers; aged 32 years [range 24 to 48 years], 47% men, from 2014 to 2020), which was acquired with locally used CMR scanners (scanners from 3 vendors; 2 1.5-T and 5 3-T scanners) and protocols. Automated retrospective valve tracking was locally performed at each site to quantify the valvular flow and repeated by 1 central site. Interobserver agreement was evaluated with intraclass correlation coefficients (ICCs). Net forward volume (NFV) consistency among the valves was evaluated by calculating the intervalvular variation. Multiple regression analysis was performed to assess the predicting effect of local CMR scanners and protocols on the intervalvular inconsistency. RESULTS: The interobserver analysis demonstrated strong-to-excellent agreement for NFV (ICC: 0.85 to 0.96) and moderate-to-excellent agreement for regurgitation fraction (ICC: 0.53 to 0.97) for all sites and valves. In addition, all observers established a low intervalvular variation (≤10.5%) in their analysis. The availability of 2 cine images per valve for valve tracking compared with 1 cine image predicted a decreasing variation in NFV among the 4 valves (beta = -1.3; p = 0.01). CONCLUSIONS: Independently of locally used CMR scanners and protocols, valvular flow quantification can be performed consistently with automated retrospective valve tracking in 4D flow CMR.


Asunto(s)
Estudios Retrospectivos , Humanos , Espectroscopía de Resonancia Magnética , Valor Predictivo de las Pruebas
8.
Radiol Cardiothorac Imaging ; 2(5): e200004, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33778618

RESUMEN

PURPOSE: To compare the accuracy of semiautomated flow tracking with that of semiautomated valve tracking in the quantification of mitral valve (MV) regurgitation from clinical four-dimensional (4D) flow MRI data obtained in patients with mild, moderate, or severe MV regurgitation. MATERIALS AND METHODS: The 4D flow MRI data were retrospectively collected from 30 patients (21 men; mean age, 61 years ± 10 [standard deviation]) who underwent 4D flow MRI from 2006 to 2016. Ten patients had mild MV regurgitation, nine had moderate MV regurgitation, and 11 had severe MV regurgitation, as diagnosed by using semiquantitative echocardiography. The regurgitant volume (Rvol) across the MV was obtained using three methods: indirect quantification of Rvol (RvolINDIRECT), semiautomated quantification of Rvol using valve tracking (RvolVALVE), and semiautomated quantification of Rvol using flow tracking (RvolFLOW). A second observer repeated the measurements. Aortic valve flow was quantified as well to test for intervalve consistency. The Wilcoxon signed rank test, orthogonal regression, Bland-Altman analysis, and coefficients of variation were used to assess agreement among measurements and between observers. RESULTS: RvolFLOW was higher (median, 24.8 mL; interquartile range [IQR], 14.3-45.7 mL) than RvolVALVE (median, 9.9 mL; IQR, 6.0-16.9 mL; P < .001). Both RvolFLOW and RvolVALVE differed significantly from RvolINDIRECT (median, 19.1 mL; IQR, 4.1-47.5 mL; P = .03). RvolFLOW agreed more with RvolINDIRECT (y = 0.78x + 12, r = 0.88) than with RvolVALVE (y = 0.16x + 8.1, r = 0.53). Bland-Altman analysis revealed underestimation of RvolVALVE in severe MV regurgitation. Interobserver agreement was excellent for RvolFLOW (r = 0.95, coefficient of variation = 27%) and moderate for RvolVALVE (r = 0.72, coefficient of variation = 57%). Orthogonal regression demonstrated better intervalve consistency for flow tracking (y = 1.2x - 13.4, r = 0.82) than for valve tracking (y = 2.7x - 92.4, r = 0.67). CONCLUSION: Flow tracking enables more accurate 4D flow MRI-derived MV regurgitation quantification than valve tracking in terms of agreement with indirect quantification and intervalve consistency, particularly in severe MV regurgitation.Supplemental material is available for this article.© RSNA, 2020.

9.
Radiology ; 292(3): 585-594, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31335282

RESUMEN

BackgroundChronic obstructive pulmonary disease (COPD) is associated with hemodynamic changes in the pulmonary vasculature. However, cardiac effects are not fully understood and vary by phenotype of chronic lower respiratory disease.PurposeTo use four-dimensional (4D) flow MRI for comprehensive assessment of the right-sided cardiovascular system, assess its interrater and intraobserver reproducibility, and examine associations with venous return to the right heart in individuals with chronic COPD and emphysema.Materials and MethodsThe Multi-Ethnic Study of Atherosclerosis COPD substudy prospectively recruited participants who smoked and who had COPD and nested control participants from population-based samples. Electrocardiography and respiratory gated 4D flow 1.5-T MRI was performed at three sites with full volumetric coverage of the thoracic vessels in 2014-2017 with postbronchodilator spirometry and inspiratory chest CT to quantify percent emphysema. Net flow, peak velocity, retrograde flow, and retrograde fraction were measured on 14 analysis planes. Interrater reproducibility was assessed by two independent observers, and the principle of conservation of mass was employed to evaluate the internal consistency of flow measures. Partial correlation coefficients were adjusted for age, sex, race/ethnicity, height, weight, and smoking status.ResultsAmong 70 participants (29 participants with COPD [mean age, 73.5 years ± 8.1 {standard deviation}; 20 men] and 41 control participants [mean age, 71.0 years ± 6.1; 22 men]), the interrater reproducibility of the 4D flow MRI measures was good to excellent (intraclass correlation coefficient range, 0.73-0.98), as was the internal consistency. There were no statistically significant differences in venous flow parameters according to COPD severity (P > .05). Greater percent emphysema at CT was associated with greater regurgitant flow in the superior and inferior caval veins and tricuspid valve (adjusted r = 0.28-0.55; all P < .01), particularly in the superior vena cava.ConclusionFour-dimensional flow MRI had good-to-excellent observer variability and flow consistency. Percent emphysema at CT was associated with statistically significant differences in retrograde flow, greatest in the superior vena cava.© RSNA, 2019Online supplemental material is available for this article.See also the editorial by Choe in this issue.


Asunto(s)
Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/fisiopatología , Venas Cavas/diagnóstico por imagen , Venas Cavas/fisiología , Anciano , Aterosclerosis , Velocidad del Flujo Sanguíneo/fisiología , Etnicidad , Femenino , Humanos , Pulmón/diagnóstico por imagen , Pulmón/fisiología , Masculino , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfisema Pulmonar/diagnóstico por imagen , Reproducibilidad de los Resultados
11.
J Magn Reson Imaging ; 48(2): 318-329, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30134000

RESUMEN

The most common types of left-sided valvular heart disease (VHD) in the Western world are aortic valve stenosis, aortic valve regurgitation, and mitral valve regurgitation. Comprehensive clinical evaluation entails both hemodynamic analysis and structural as well as functional characterization of the left ventricle. Cardiac magnetic resonance imaging (MRI) is an established diagnostic modality for assessment of left-sided VHD and is progressively gaining ground in modern-day clinical practice. Detailed flow visualization and quantification of flow-related biomarkers in VHD can be obtained using 4D flow MRI, an imaging technique capable of measuring blood flow in three orthogonal directions over time. In addition, recent MRI sequences enable myocardial tissue characterization and strain analysis. In this review we discuss the emerging potential of state-of-the-art MRI including 4D flow MRI, tissue mapping, and strain quantification for the diagnosis and prognosis of left-sided VHD. LEVEL OF EVIDENCE: 1 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2018. J. MAGN. RESON. IMAGING 2018;48:318-329.


Asunto(s)
Enfermedades de las Válvulas Cardíacas/diagnóstico por imagen , Válvulas Cardíacas/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Insuficiencia de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Biomarcadores , Ecocardiografía , Hemodinámica , Humanos , Imagenología Tridimensional/métodos , Cinética , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Pronóstico , Resistencia al Corte , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...