Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 665206, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093623

RESUMEN

The remarkable diversity of sterol biosynthetic capacities described in living organisms is enriched at a fast pace by a growing number of sequenced genomes. Whereas analytical chemistry has produced a wealth of sterol profiles of species in diverse taxonomic groups including seed and non-seed plants, algae, phytoplanktonic species and other unicellular eukaryotes, functional assays and validation of candidate genes unveils new enzymes and new pathways besides canonical biosynthetic schemes. An overview of the current landscape of sterol pathways in the tree of life is tentatively assembled in a series of sterolotypes that encompass major groups and provides also peculiar features of sterol profiles in bacteria, fungi, plants, and algae.

3.
Methods Mol Biol ; 2061: 303-318, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31583668

RESUMEN

This chapter provides a detailed description of TILLING and CRISPR-Cas9 approaches for the purpose of studying genes/factors involved in meiotic recombination in the polyploid species B. napus. The TILLING approach involves the screening and identification of EMS-mutagenized M2 B. napus plants. The strategy for high-throughput plant pooling, the set up for microfluidic PCR and sequencing is provided and the parameters for the analysis of sequence results and the detection of mutants are explained. The CRISPR-Cas system relies on the optimal design of guide RNAs and their efficient expression. The procedure for the generation and detection of knockout mutants is described with the aims to simultaneously target homologous genes.


Asunto(s)
Brassica/genética , Miosis , Mutación , Poliploidía , Sistemas CRISPR-Cas , Edición Génica , Genoma de Planta , Genotipo , Recombinación Genética , Análisis de Secuencia de ADN , Transformación Genética
4.
Front Plant Sci ; 9: 368, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29628933

RESUMEN

Meiotic crossovers (COs) are essential for proper chromosome segregation and the reshuffling of alleles during meiosis. In WT plants, the number of COs is usually small, which limits the genetic variation that can be captured by plant breeding programs. Part of this limitation is imposed by proteins like FANCM, the inactivation of which results in a 3-fold increase in COs in Arabidopsis thaliana. Whether the same holds true in crops needed to be established. In this study, we identified EMS induced mutations in FANCM in two species of economic relevance within the genus Brassica. We showed that CO frequencies were increased in fancm mutants in both diploid and tetraploid Brassicas, Brassica rapa and Brassica napus respectively. In B. rapa, we observed a 3-fold increase in the number of COs, equal to the increase observed previously in Arabidopsis. In B. napus we observed a lesser but consistent increase (1.3-fold) in both euploid (AACC) and allohaploid (AC) plants. Complementation tests in A. thaliana suggest that the smaller increase in crossover frequency observed in B. napus reflects residual activity of the mutant C copy of FANCM. Altogether our results indicate that the anti-CO activity of FANCM is conserved across the Brassica, opening new avenues to make a wider range of genetic diversity accessible to crop improvement.

5.
New Phytol ; 217(1): 367-377, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29034956

RESUMEN

Structural variation is a major source of genetic diversity and an important substrate for selection. In allopolyploids, homoeologous exchanges (i.e. between the constituent subgenomes) are a very frequent type of structural variant. However, their direct impact on gene content and gene expression had not been determined. Here, we used a tissue-specific mRNA-Seq dataset to measure the consequences of homoeologous exchanges (HE) on gene expression in Brassica napus, a representative allotetraploid crop. We demonstrate that expression changes are proportional to the change in gene copy number triggered by the HEs. Thus, when homoeologous gene pairs have unbalanced transcriptional contributions before the HE, duplication of one copy does not accurately compensate for loss of the other and combined homoeologue expression also changes. These effects are, however, mitigated over time. This study sheds light on the origins, timing and functional consequences of homeologous exchanges in allopolyploids. It demonstrates that the interplay between new structural variation and the resulting impacts on gene expression, influences allopolyploid genome evolution.


Asunto(s)
Brassica napus/genética , Dosificación de Gen , Variación Genética , Genoma de Planta/genética , Expresión Génica , Especificidad de Órganos , Poliploidía , Recombinación Genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA