Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(27): 6560-6566, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38943623

RESUMEN

We present maximally localized Wannier functions and Voronoi tessellation to obtain dipole moment distributions for vibrational spectra in several important ionic liquids calculated by using ab initio molecular dynamics simulations. IR and Raman spectra of various imidazolium-based ionic liquids (ILs) paired with six amino acid anions are shown herein. For IR spectra, two approaches (Wannier and Voronoi) are in agreement with respect to the relative intensities and the overall shapes for the main peaks. Under Raman spectra, the polarizability of the covalent bonds is shown to affect the strength of the Raman scattering signal. The advantage of the Voronoi tessellation method, being that it does not have strong spikes in its time development, is demonstrated by the comparison of two theoretical methods (Wannier and Voronoi) with experimental data. We analyze the errors between theoretical and experimental spectroscopic data, with the Voronoi method shown to accurately reproduce experimental values. In addition, theoretical spectroscopy shows the ability to accurately separate components of a mixture. The combination of theoretical and experimental methods is utilized to understand the spectroscopic properties of amino acid-based imidazolium ILs.

2.
Int J Biol Macromol ; 254(Pt 2): 127694, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898248

RESUMEN

To explore the possibility of applying lignin in practice, an industrial lignosulfonate (0-50 vol%) was blended with four ionomers. The concentrations of carboxyl and carboxylate groups were systematically varied in the ethylene-acrylic acid copolymers to study the competition of hydrogen and ionic bonds forming between the components. The mechanical properties of the blends were determined by tensile testing. The structure was investigated by scanning electron microscopy, while deformation and failure processes were studied by acoustic emission measurements and microscopy. Interfacial interactions were quantitatively characterized by analyzing local deformation processes and by evaluating the composition dependence of the tensile strength using appropriate models. Molecular dynamics simulations indicated that carboxylate groups preferably form clusters in the ionomer phase, consequently, the increasing degree of neutralization results in ionomers with more and more self-interactions of components deteriorating ionomer-lignin interactions. The novel combination of experiments, modeling, and simulation was done for the first time on such materials, and it pointed out that the role of hydrogen bonds is more critical in determining blend properties. Blends can be prepared for practical applications with a good combination of stiffness (0.8 GPa), tensile strength (22 MPa), and elongation-at-break (25 %) at 30 vol% lignosulfonate content and 33 % neutralization.


Asunto(s)
Lignina , Polímeros , Polímeros/química , Lignina/química , Resistencia a la Tracción
3.
J Phys Chem Lett ; 14(47): 10531-10536, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37972218

RESUMEN

While so far it has been possible to calculate vibrational spectra of mixtures at a particular composition, we present here a novel cluster approach for a fast and robust calculation of mole fraction dependent infrared and vibrational circular dichroism spectra at the example of acetonitrile/(R)-butan-2-ol mixtures. By assigning weights to a limited number of quantum chemically calculated clusters, vibrational spectra can be obtained at any desired composition by a weighted average of the single cluster spectra. In this way, peak positions carrying information about intermolecular interactions can be predicted. We show that mole fraction dependent peak shifts can be accurately modeled and, that experimentally recorded infrared spectra can be reproduced with high accuracy over the entire mixing range. Because only a very limited number of clusters is required, the presented approach is a valuable and computationally efficient tool to access mole fraction dependent spectra of mixtures on a routine basis.

4.
Phys Chem Chem Phys ; 25(36): 24678-24685, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37667665

RESUMEN

Several amino-acid based imidazolium ILs are investigated through the use of ab initio molecular dynamics (AIMD), which includes full polarization. The electric dipole moment distribution and polarization is used as a means of characterizing and understanding these complex systems. Various charge scheme methods were analyzed (Wannier function, Blöchl, Löwdin and Mulliken charge schemes and Voronoi tessellation) to determine their ability to predict dipole moments. These results and the following comparison of methods further deepen the knowledge of polarization by highlighting the importance of the anion and cation separately on polarizability contribution and the need to select a suitable method to predict these. The angular probability distribution is utilized to measure the degree of locality in monopole-dipole electrostatic interactions, which showed no preferential alignment over 700 pm. In addition, the IR and Raman spectra from Voronoi tessellation of [C2C1Im][ala] were analyzed. In these, the strongest signalling peaks showed consistency with experiment and the ability to differentiate between anion and cation components of the IL.

5.
Chemistry ; 29(51): e202301239, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37341169

RESUMEN

Chirality transfer from the chiral molecule (R)-1,2-propylene oxide to the achiral anion of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid is observed. The chiral probe selectively affects one part of the binary ionic liquid, i. e., it has previously been shown experimentally and theoretically that this particular imidazolium cation can be affected by chirality transfer, but in the present system chirality is almost exclusively transferred to the anion and not to both parts of the solvent (anion and cation). This observation is of high relevance because of its selectivity and because anion effects are usually much more important in ionic liquid research than cation effects. From ab initio molecular dynamics simulations, a conformational analysis and dissected vibrational circular dichroism spectra are obtained to study the chirality transfer. While in the neat ionic liquid two mirror imaged trans conformers of the anion occur almost equally, we observe an excess of one of these conformers in the presence of the chiral solute, causing optical activity of the anion. Although the cis conformers are not tremendously affected by the chirality transfer, they gain in total population when (R)-1,2-propylene oxide is dissolved in the ionic liquid.

6.
Chemistry ; 29(18): e202300502, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36861950

RESUMEN

Invited for the cover of this issue are Oldamur Hollóczki and co-workers at the Universities of Bonn, Ghent and Debrecen. The image depicts the search of an ionic base for the acidic proton of an imidazolium cation in order to form a carbene complex. Read the full text of the article at 10.1002/chem.202203636.

7.
Chemistry ; 29(18): e202203636, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36655873

RESUMEN

The mechanism of metal-N-heterocyclic carbene (NHC) complex formation from imidazolium salts in the presence of weak bases was investigated through theoretical methods. Quantum chemical calculations revealed that the two bases considered here, sodium acetate and trimethylamine, both facilitate complex formation. In contrast to previous experiments, these calculations indicated a slightly lower barrier with the amine. Molecular dynamics simulations showed that the ionic nature of the [AuCl2 ]- and imidazolium ions, as well as the sodium acetate base keep these species associated in the reaction mixture through ion pairing. This pre-association of the components produces those clusters that are essential for the metal complex formation reaction. The neutral amine, however, remains mostly separated from the other reaction partners, making it a significantly less effective base.

8.
Inorg Chem ; 62(4): 1667-1678, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36651698

RESUMEN

The dissolution of gray selenium in tetraalkylphosphonium acetate ionic liquids was investigated by UV-vis, NMR, and Raman spectroscopy as well as quantum chemical calculations and electrochemical methods. Acetate anions and tetraalkylphosphonium cations facilitate the formation and stabilization of oligoselenides Sen2- and cationic Se species in the ionic liquid phase. Chemical exchange of selenium atoms was demonstrated by variable-temperature 77Se NMR experiments. Additionally, uncharged cycloselenium molecules exist at high selenium concentrations. Upon dilution with ethanol, amorphous red selenium precipitates from the solution. Moreover, crystalline Se1-xTex solid solutions precipitate when elemental tellurium is added to the mixture as confirmed by powder X-ray diffraction and Raman spectroscopy.

9.
J Chem Inf Model ; 62(22): 5634-5644, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36315975

RESUMEN

We present a novel cluster analysis implemented in our open-source software TRAVIS and its application to realistic and complex chemical systems. The underlying algorithm is exclusively based on atom distances. Using a two-dimensional model system, we first introduce different cluster analysis functions and their application to single snapshots and trajectories including periodicity and temporal propagation. Using molecular dynamics simulations of pure water with varying system size, we show that our cluster analysis is size-independent. Furthermore, we observe a similar clustering behavior of pure water in classical and ab initio molecular dynamics simulations, showing that our cluster analysis is universal. In order to emphasize the application to more complex systems and mixtures, we additionally apply the cluster analysis to ab initio molecular dynamics simulations of the [C2C1Im][OAc] ionic liquid and its mixture with water. Using that, we show that our cluster analysis is able to analyze the clustering of the individual components in a mixture as well as the clustering of the ionic liquid with water.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Simulación de Dinámica Molecular , Agua/química , Programas Informáticos , Análisis por Conglomerados
10.
J Phys Chem A ; 126(40): 7070-7083, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36170053

RESUMEN

Weighting methods applied to systems with many conformers have been broadly employed to calculate thermodynamic properties, structural characteristics, and populations. To better understand and test the sensitivity of conventional weighting methods, the conformational distributions of nicotine and its phosphorus-substituted derivatives are investigated. The weighting schemes used for this are all based on Boltzmann statistics. Classical Boltzmann factors based on the electronic energy and the Gibbs free energy are calculated at different quantum chemical levels of theory and compared to cluster weights obtained by the quantum cluster equilibrium method. Furthermore, the influence of the modified rigid-rotor-harmonic-oscillator (mRRHO) approximation on the cluster weights is investigated. The substitution of the nitrogen atom in the methylpyrrolidine ring by a phosphorus atom results in more monomer conformers and clusters being populated. The conformational distribution of the monomers remained stable at different levels of theory and weighting methods. However, going to dimers and trimers, we observe a significant influence of the level of theory, weighting method, and mRRHO cutoff on the populations of these clusters. We show that mRRHO cutoff values of 50 and 100 cm-1 yield similar results, which is why 50 cm-1 is recommended as a robust choice. Furthermore, we observe that the global minimum for ΔE0 and ΔG varies in a few cases and that the global minimum is not always the dominantly occupied structure.


Asunto(s)
Nicotina , Teoría Cuántica , Nitrógeno , Fósforo , Termodinámica
11.
J Chem Phys ; 157(1): 014505, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803822

RESUMEN

In this work, we investigate how uncertainties in experimental input data influence the results of quantum cluster equilibrium calculations. In particular, we focus on the calculation of vaporization enthalpies and entropies of seven organic liquids, compare two computational approaches for their calculation, and investigate how these properties are affected by changes in the experimental input data. It is observed that the vaporization enthalpies and entropies show a smooth dependence on changes in the reference density and boiling point. The reference density is found to have only a small influence on the vaporization thermodynamics, whereas the boiling point has a large influence on the vaporization enthalpy but only a small influence on the vaporization entropy. Furthermore, we employed the Gauss--Hermite estimator in order to quantify the uncertainty in thermodynamic functions that stems from inaccuracies in the experimental reference data for the example of the vaporization enthalpy of (R)-butan-2-ol. We quantify the uncertainty as 30.95 · 10-3 kJ mol-1. In addition, we compare the convergence behavior and computational effort of the Gauss-Hermite estimator with the Monte Carlo approach and show the superiority of the former. Using this study, we present how uncertainty quantification can be applied to examples from theoretical chemistry.

12.
J Phys Chem B ; 126(4): 766-777, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35034453

RESUMEN

The theoretical treatment of ionic liquids must focus now on more realistic models while at the same time keeping an accurate methodology when following recent ionic liquids research trends or allowing predictability to come to the foreground. In this Perspective, we summarize in three cases of advanced ionic liquid research what methodological progress has been made and point out difficulties that need to be overcome. As particular examples to discuss we choose reactions, chirality, and radicals in ionic liquids. All these topics have in common that an explicit or accurate treatment of the electronic structure and/or intermolecular interactions is required (accurate methodology), while at the same time system size and complexity as well as simulation time (realistic model) play an important role and must be covered as well.


Asunto(s)
Líquidos Iónicos , Simulación por Computador , Líquidos Iónicos/química
13.
J Org Chem ; 87(3): 1867-1873, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34319732

RESUMEN

By simulating butan-2-ol dissolved in the chiral ionic liquid 1-ethyl-3-methylimidazolium (S)-alaninate, we investigate the chiral recognition of butan-2-ol in the ionic liquid. The hydrogen bonding between the chiral anion and both enantiomers of butan-2-ol is similar; however, both chiral molecules (anion and alcohol) induce an asymmetry in the achiral cation which leads to a more favorable environment for the alcohol in the heterochiral system as compared to the homochiral system and hence provides an energetic stabilization of the former.


Asunto(s)
Líquidos Iónicos , Cationes , Etanol , Enlace de Hidrógeno , Estereoisomerismo
14.
Chemistry ; 28(7): e202103770, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890100

RESUMEN

Elemental tellurium readily dissolves in ionic liquids (ILs) based on tetraalkylphosphonium cations even at temperatures below 100 °C. In the case of ILs with acetate, decanoate, or dicyanamide anions, dark red to purple colored solutions form. A study combining NMR, UV-Vis and Raman spectroscopy revealed the formation of tellurium anions (Ten )2- with chain lengths up to at least n=5, which are in dynamic equilibrium with each other. Since external influences could be excluded and no evidence of an ionic liquid reaction was found, disproportionation of the tellurium is the only possible dissolution mechanism. Although the spectroscopic detection of tellurium cations in these solutions is difficult, the coexistence of tellurium cations, such as (Te4 )2+ and (Te6 )4+ , and tellurium anions could be proven by cyclic voltammetry and electrodeposition experiments. DFT calculations indicate that electrostatic interactions with the ions of the ILs are sufficient to stabilize both types of tellurium ions in solution.

15.
J Phys Chem B ; 124(33): 7272-7283, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32693595

RESUMEN

We present a cluster-weighting approach for calculating the vibrational circular dichroism (VCD) spectra of bulk phase systems. Based on the quantum cluster equilibrium theory, cluster populations are received via self-consistent field calculations that allow a mixing of differently sized oligomers at the same time. The thereby obtained cluster weights are employed for the weighting of individual cluster VCD spectra in order to calculate an overall gas or bulk phase VCD spectrum. As the mixing of different oligomer sizes is possible, different structural motifs and interactions can be included, and explicit solvation, typically necessary for describing hydrogen bonds, is intrinsically taken care of, however, without neglecting monomeric structures and different conformers. We test the sensitivity of Boltzmann and cluster weights with respect to the level of theory employed and show that cluster weights are less sensitive. By a constant increase of the oligomer sizes included in our cluster sets, combined with a continuous truncation of low populated clusters, we are able to improve the agreement between theory and experiment until we reach an overlap which allows a certain assignment of the absolute configuration based on an experimental bulk phase spectrum. Combined with a computationally cost-efficient level of theory, this approach provides a valuable tool for the fast calculation of VCD spectra for bulk phase systems.

16.
Phys Chem Chem Phys ; 22(19): 10726-10737, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32150178

RESUMEN

Ionic liquids and their mixtures with water show remarkable features in cellulose processing. For this reason, understanding the behavior of carbohydrates in ionic liquids is important. In the present study, we investigated three d-glucose isomers (α, ß and open-chain) in 1-ethyl-3-methylimidazolium acetate in the presence and absence of water, through ab initio molecular dynamics simulations. In the complex hydrogen bonding network of these mixtures, the most interesting observation is that upon water addition every hydrogen bond elongates, except the glucose-glucose hydrogen bond for the open-chain and the α-form which shortens, clearly showing the beginning of the crystallization process. The ring glucose rearranges from on-top to in-plane and the open form changes from a coiled to a more linear arrangement when adding water which explains the contradiction that the center of mass distances of the glucose molecules with other glucose molecules grow while the hydrogen bonds shorten. The appearance of coiled open forms indicates that the previously suggested isomerization between these forms is possible and might play a role in the solubility of the related carbohydrates. The calculated IR and VCD spectra reveal insight into the intermolecular interactions, with good to excellent agreements with experimental spectra. Investigating the role of the cation, distances between the acidic carbon atom of the cation and the glucose carbon atom where ring closure and opening occurs are found, which are way shorter than dispersion-like interactions between aliphatic hydrocarbons.

17.
Angew Chem Int Ed Engl ; 58(10): 3212-3216, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30589171

RESUMEN

We demonstrate for formic and acetic acid dissolved in water as examples that the binary quantum cluster equilibrium (bQCE) approach can predict acid strengths over the whole range of acid concentrations. The acid strength increases in a complex rather than a simple way with increasing mole fraction of the acid from 0 to 0.7, reflecting the complex interplay between the dissociated ions or conjugate bases available as compared to the acid and water molecules. Furthermore, our calculated ion concentrations meet the experimental maximum of the conductivity with excellent agreement for acetic acid and satisfactorily for the formic acid/water mixture. As only a limited number of simple quantum-chemical calculations are required for the prediction, bQCE is clearly a valuable approach to access these quantities also in non-aqueous solutions. It is a highly valuable asset for predicting ionization processes in highly concentrated solutions, which are relevant for biological and chemical systems, as well as technological processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...