Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Haematologica ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572551

RESUMEN

Patients with sickle cell disease (SCD) display lower slope coefficients of the oxygen uptake (V_O2) vs. work rate (W) relationship (delineating an O2 uptake/demand mismatch) and a poor metabolic flexibility. Because endurance training (ET) increases the microvascular network and oxidative enzymes activity including one involved in lipid oxidation, ET might improve the slope coefficient of the V_O2 vs. W curve and the metabolic flexibility of SCD patients. ET may also contribute to improve patient post-exercise cardiopulmonary and metabolic recovery. Fifteen patients with SCD performed a submaximal incremental test on a cycle ergometer before (SIT1) and after (SIT2) 8 weeks of ET. Minute ventilation, ventilation rate (VR), heart rate (HR), V_O2, CO2 production, respiratory exchange ratio, carbohydrate/lipid utilization and partitioning (including %Lipidox) and blood lactate concentration ([lactate]b) were measured during and after SIT1 and SIT2. At baseline, the slope coefficient of the V_O2 vs. W curve positively correlated with total hemoglobin, mean corpuscular hemoglobin and percentage of HbF. After training, the slope coefficient of the V_O2 vs. W curve was significantly higher and the [lactate]b increase was delayed. If patients' energy metabolism apparently relied largely on carbohydrate sources during SIT1, %Lipidox tended to increase at low exercise intensities during SIT2, supporting a training-induced improvement of metabolic flexibility in patients with SCD. Post-exercise recovery of VR, V_E/V_CO2, HR and [lactate]b was faster after training. We concluded that ET in patients with SCD i) ameliorated the oxygen uptake/demand mismatch, ii) blunted the metabolic inflexibility, and iii) improved post-exercise cardiopulmonary and metabolic responses.

2.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047427

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a worldwide prevalent respiratory disease mainly caused by tobacco smoke exposure. COPD is now considered as a systemic disease with several comorbidities. Among them, skeletal muscle dysfunction affects around 20% of COPD patients and is associated with higher morbidity and mortality. Although the histological alterations are well characterized, including myofiber atrophy, a decreased proportion of slow-twitch myofibers, and a decreased capillarization and oxidative phosphorylation capacity, the molecular basis for muscle atrophy is complex and remains partly unknown. Major difficulties lie in patient heterogeneity, accessing patients' samples, and complex multifactorial process including extrinsic mechanisms, such as tobacco smoke or disuse, and intrinsic mechanisms, such as oxidative stress, hypoxia, or systemic inflammation. Muscle wasting is also a highly dynamic process whose investigation is hampered by the differential protein regulation according to the stage of atrophy. In this review, we report and discuss recent data regarding the molecular alterations in COPD leading to impaired muscle mass, including inflammation, hypoxia and hypercapnia, mitochondrial dysfunction, diverse metabolic changes such as oxidative and nitrosative stress and genetic and epigenetic modifications, all leading to an impaired anabolic/catabolic balance in the myocyte. We recapitulate data concerning skeletal muscle dysfunction obtained in the different rodent models of COPD. Finally, we propose several pathways that should be investigated in COPD skeletal muscle dysfunction in the future.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Contaminación por Humo de Tabaco , Humanos , Atrofia Muscular/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Músculo Esquelético/metabolismo , Inflamación/metabolismo , Hipoxia/metabolismo
3.
J Cachexia Sarcopenia Muscle ; 14(2): 745-757, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36811134

RESUMEN

Skeletal muscle wasting, whether related to physiological ageing, muscle disuse or to an underlying chronic disease, is a key determinant to quality of life and mortality. However, cellular basis responsible for increased catabolism in myocytes often remains unclear. Although myocytes represent the vast majority of skeletal muscle cellular population, they are surrounded by numerous cells with various functions. Animal models, mostly rodents, can help to decipher the mechanisms behind this highly dynamic process, by allowing access to every muscle as well as time-course studies. Satellite cells (SCs) play a crucial role in muscle regeneration, within a niche also composed of fibroblasts and vascular and immune cells. Their proliferation and differentiation is altered in several models of muscle wasting such as cancer, chronic kidney disease or chronic obstructive pulmonary disease (COPD). Fibro-adipogenic progenitor cells are also responsible for functional muscle growth and repair and are associated in disease to muscle fibrosis such as in chronic kidney disease. Other cells have recently proven to have direct myogenic potential, such as pericytes. Outside their role in angiogenesis, endothelial cells and pericytes also participate to healthy muscle homoeostasis by promoting SC pool maintenance (so-called myogenesis-angiogenesis coupling). Their role in chronic diseases muscle wasting has been less studied. Immune cells are pivotal for muscle repair after injury: Macrophages undergo a transition from the M1 to the M2 state along with the transition between the inflammatory and resolutive phase of muscle repair. T regulatory lymphocytes promote and regulate this transition and are also able to activate SC proliferation and differentiation. Neural cells such as terminal Schwann cells, motor neurons and kranocytes are notably implicated in age-related sarcopenia. Last, newly identified cells in skeletal muscle, such as telocytes or interstitial tenocytes could play a role in tissular homoeostasis. We also put a special focus on cellular alterations occurring in COPD, a chronic and highly prevalent respiratory disease mainly linked to tobacco smoke exposure, where muscle wasting is strongly associated with increased mortality, and discuss the pros and cons of animal models versus human studies in this context. Finally, we discuss resident cells metabolism and present future promising leads for research, including the use of muscle organoids.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Regeneración , Animales , Humanos , Regeneración/fisiología , Células Endoteliales , Calidad de Vida , Músculo Esquelético/patología , Atrofia Muscular/patología , Caquexia/patología , Modelos Animales , Enfermedad Pulmonar Obstructiva Crónica/patología
4.
Front Physiol ; 13: 827932, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431985

RESUMEN

In elite oarsmen, the rowing ergometer is a valuable tool for both training and studying rowing performance determinants. However, the energy cost of rowing, often reported as a determinant of performance, has never been described for ergometer rowing. Therefore, this study aimed to characterize the energy cost of ergometer rowing (ECR) in elite oarsmen, its contribution to 2,000 m performance, and its determinants. This study was conducted on 21 elite oarsmen from the French national team. It included an incremental exercise test up to exhaustion and an all-out performance test over 2,000 m, both conducted on a rowing ergometer. Gas exchange analysis was performed to calculate oxygen uptake and substrate utilization rate. Whole blood lactate concentrations during the incremental test were obtained from the earlobe. During the incremental test, ECR displayed a significant linear increase up to a plateau that reached a mean rowing speed of 5.23 ± 0.02 m⋅s-1. The ECR values at 300, 350, and 400 W were positively correlated with performance expressed as the time required to perform the 2,000 m distance on the rowing ergometer. The same ECR values were found to be significantly related to fat oxidation (expressed in percentage of total energy supply) and blood lactate concentrations. This study provides the first description of ECR and of its relationship to exercise intensity on the rowing ergometer in elite oarsmen. ECR appeared to be a factor of performance and interestingly was related to energy supply from fat and blood lactate concentrations.

5.
Angiogenesis ; 25(3): 275-277, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35013842

RESUMEN

Chronic obstructive pulmonary disease (COPD) patients have an increased risk of cardiovascular disease. Muscle biopsies have revealed that the muscle vasculature in COPD patients was characterized by a capillary rarefaction with reduced pericyte coverage. Thus, an imbalance of the plasma Angiopoietin-1 / Angiopoietin-2 (Ang2/Ang1) ratio could constitute a non-invasive marker of the muscle vascular impairment. In 14 COPD patients (65.5±5.1-year-old) and 7 HC (63.3±5.8-year-old), plasma samples were obtained at 3 time-points: before, after 5 weeks (W5), and after 10 weeks (W10) of exercise training. COPD patients showed a muscle capillary rarefaction at baseline with a reduced capillary coverage at W5 and W10. The plasma Ang2/Ang1 ratio was significantly higher in COPD patients vs. HC during the training (Group: p=0.01). The plasma Ang2/Ang1 ratio was inversely correlated with the pericyte coverage index regardless of the time period W0 (r=-0.51; p=0.02), W5 (r=-0.48; p=0.04), and W10 (r=-0.61; p<0.01). Last, in ECFC/MSC co-cultures exposed to the W10 serum from COPD patients and HC, the plasma Ang2/Ang1 at W10 were inversely correlated with calponin staining (r=-0.64. p=0.01 and r= 0.71. p<0.01, Fig. 1B), in line with a role of this plasma Ang2/Ang1 in the MSC differentiation into pericytes. Altogether, plasma Ang2/Ang1 ratio could constitute a potential marker of the vascular impairment in COPD patients.


Asunto(s)
Angiopoyetina 1 , Angiopoyetina 2 , Rarefacción Microvascular , Enfermedad Pulmonar Obstructiva Crónica , Anciano , Angiopoyetina 1/sangre , Angiopoyetina 2/sangre , Biomarcadores/sangre , Humanos , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico
6.
Front Nutr ; 8: 734152, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34859027

RESUMEN

Lactate constitutes the primary gluconeogenic precursor in healthy humans at rest and during low-intensity exercise. Data on the interactions between lactate and glucose metabolisms during recovery after short-duration high-intensity exercise are sparse. The aim of the present study was to describe blood glucose ([glucose]b) and lactate ([lactate]b) concentration curves during recovery following short-duration high-intensity exercise. Fifteen healthy Cameroonian subjects took part in the study and performed successively (i) an incremental exercise to exhaustion to determine maximal work rate (Pmax) and (ii) a 2-min 110% Pmax exercise after which blood lactate and glucose concentrations were measured during the 80-min passive recovery. In response to the 2-min 110% Pmax exercise, [glucose]b remained stable (from 4.93 ± 1.13 to 4.65 ± 0.74 mmol.L-1, NS) while [lactate]b increased (from 1.35 ± 0.36 to 7.87 ± 1.66 mmol.L-1, p < 0.0001). During recovery, blood lactate concentrations displayed the classic biphasic curve while blood glucose concentrations displayed a singular shape including a delayed and transitory rebound of glycemia. This rebound began at 27.7 ± 6.2 min and peaked at 6.78 ± 0.53 mmol.L-1 at 56.3 ± 9.7 min into recovery. The area under the curve (AUC) of [lactate]b during the rebound of glycemia was positively correlated with the peak value of glycemia and the AUC of [glucose]b during the rebound. In conclusion, the delayed rebound of glycemia observed in the present study was associated with lactate availability during this period.

7.
JMIR Mhealth Uhealth ; 9(12): e28242, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34874887

RESUMEN

BACKGROUND: Obesity is a major public health issue. Combining exercise training, nutrition, and therapeutic education in metabolic rehabilitation (MR) is recommended for obesity management. However, evidence from randomized controlled studies is lacking. In addition, MR is associated with poor patient adherence. Mobile health devices improve access to MR components. OBJECTIVE: The aim of this study is to compare the changes in body composition, anthropometric parameters, exercise capacity, and quality of life (QOL) within 12 weeks of patients in the telerehabilitation (TR) program to those of usual care patients with obesity. METHODS: This was a parallel-design randomized controlled study. In total, 50 patients with obesity (BMI>30 kg/m²) were included in a TR group (TRG) or a usual care group (UCG) for 12 weeks. Patients underwent biometric impedance analyses, metabolic exercise tests, actimetry, and QOL and satisfaction questionnaires. The primary outcome was the change in fat mass at 12 weeks from baseline. Secondary outcomes were changes in body weight, metabolic parameters, exercise capacity, QOL, patients' adhesion, and satisfaction. RESULTS: A total of 49 patients completed the study. No significant group × time interaction was found for fat mass (TRG: mean 1.7 kg, SD 2.6 kg; UCG: mean 1.2 kg, SD 2.4 kg; P=.48). Compared with the UCG, TRG patients tended to significantly improve their waist to hip ratios (TRG: -0.01 kg, SD 0.04; UCG: +0.01 kg, SD 0.06; P=.07) and improved QOL physical impact (TRG: +21.8, SD 43.6; UCG: -1.2, SD 15.4; P=.005). Significant time effects were observed for body composition, 6-minute walk test distance, exercise metabolism, sedentary time, and QOL. Adherence (95%) and satisfaction in the TRG were good. CONCLUSIONS: In adults with obesity, the TR program was not superior to usual care for improving body composition. However, TR was able to deliver full multidisciplinary rehabilitation to patients with obesity and improve some health outcomes. Given the patients' adherence and satisfaction, pragmatic programs should consider mobile health devices to improve access to MR. Further studies are warranted to further establish the benefits that TR has over usual care. TRIAL REGISTRATION: ClinicalTrials.gov NCT03396666; http://clinicaltrials.gov/ct2/show/NCT03396666.


Asunto(s)
Calidad de Vida , Telerrehabilitación , Adulto , Ejercicio Físico , Humanos , Obesidad , Evaluación de Resultado en la Atención de Salud
8.
Cells ; 10(11)2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34831227

RESUMEN

Among the comorbidities associated with chronic obstructive pulmonary disease (COPD), skeletal muscle weakness and atrophy are known to affect patient survival rate. In addition to muscle deconditioning, various systemic and intrinsic factors have been implicated in COPD muscle dysfunction but an impaired COPD muscle adaptation to contraction has never been extensively studied. We submitted cultured myotubes from nine healthy subjects and nine patients with COPD to an endurance-type protocol of electrical pulse stimulation (EPS). EPS induced a decrease in the diameter, covered surface and expression of MHC1 in COPD myotubes. Although the expression of protein degradation markers was not affected, expression of the protein synthesis marker mTOR was not induced in COPD compared to healthy myotubes after EPS. The expression of the differentiation markers p16INK4a and p21 was impaired, while expression of Myf5 and MyoD tended to be affected in COPD muscle cells in response to EPS. The expression of mitochondrial biogenesis markers PGC1α and MFN2 was affected and expression of TFAM and COX1 tended to be reduced in COPD compared to healthy myotubes upon EPS. Lipid peroxidation was increased and the expression of the antioxidant enzymes SOD2 and GPx4 was affected in COPD compared to healthy myotubes in response to EPS. Thus, we provide evidence of an impaired response of COPD muscle cells to contraction, which might be involved in the muscle weakness observed in patients with COPD.


Asunto(s)
Terapia por Estimulación Eléctrica , Células Musculares/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/terapia , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Femenino , Humanos , Peroxidación de Lípido , Masculino , Persona de Mediana Edad , Fibras Musculares Esqueléticas/patología , Biogénesis de Organelos , Estrés Oxidativo , Proteolisis
9.
Respir Res ; 22(1): 79, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33691702

RESUMEN

BACKGROUND: Pulmonary rehabilitation (PR) improves exercise capacity, health-related quality of life (HRQoL) and dyspnea in chronic obstructive pulmonary disease (COPD) patients. Maintenance programs can sustain the benefits for 12 to 24 months. Yet, the long-term effects (> 12 months) of pragmatic maintenance programs in real-life settings remain unknown. This prospective cohort study assessed the yearly evolution in the outcomes [6-min walking distance (6MWD), HRQoL, dyspnea] of a supervised self-help PR maintenance program for COPD patients followed for 5 years. The aim was to assess the change in the outcomes and survival probability for 1 to 5 years after PR program discharge in COPD patients following a PR maintenance program supported by supervised self-help associations. METHODS: Data were prospectively collected from 144 COPD patients who followed a pragmatic multidisciplinary PR maintenance program for 1 to 5 years. They were assessed yearly for 6MWD, HRQol (VQ11) and dyspnea (MRC). The 5-year survival probability was compared to that of a control PR group without a maintenance program. A trajectory-based cluster analysis identified the determinants of long-term response. RESULTS: Maintenance program patients showed significant PR benefits at 4 years for 6MWD and VQ11 and 5 years for MRC. The 5-year survival probability was higher than for PR patients without PR maintenance. Two clusters of response to long-term PR were identified, with responders being the less severe COPD patients. CONCLUSIONS: This study provides evidence of the efficacy of a pragmatic PR maintenance program in a real-life setting for more than 3 years. In contrast to short-term PR, long-term PR maintenance appeared more beneficial in less severe COPD patients.


Asunto(s)
Bases de Datos Factuales/tendencias , Terapia por Ejercicio/métodos , Terapia por Ejercicio/tendencias , Tolerancia al Ejercicio/fisiología , Enfermedad Pulmonar Obstructiva Crónica/rehabilitación , Anciano , Estudios de Cohortes , Terapia por Ejercicio/mortalidad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/mortalidad , Tasa de Supervivencia/tendencias , Factores de Tiempo
10.
Am J Physiol Heart Circ Physiol ; 319(5): H1142-H1151, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32986960

RESUMEN

Improvements in skeletal muscle endurance and oxygen uptake are blunted in patients with chronic obstructive pulmonary disease (COPD), possibly because of a limitation in the muscle capillary oxygen supply. Pericytes are critical for capillary blood flow adaptation during angiogenesis but may be impaired by COPD systemic effects, which are mediated by circulating factors. This study compared the pericyte coverage of muscle capillaries in response to 10 wk of exercise training in patients with COPD and sedentary healthy subjects (SHS). Fourteen patients with COPD were compared with seven matched SHS. SHS trained at moderate intensity corresponding to an individualized moderate-intensity patient with COPD trained at the same relative (%V̇o2: COPD-RI) or absolute (mL·min-1·kg-1: COPD-AI) intensity as SHS. Capillary-to-fiber ratio (C/F) and NG2+ pericyte coverage were assessed from vastus lateralis muscle biopsies, before and after 5 and 10 wk of training. We also tested in vitro the effect of COPD and SHS serum on pericyte morphology and mesenchymal stem cell (MSC) differentiation into pericytes. SHS showed greater improvement in aerobic capacity (V̇o2VT) than both patients with COPD-RI and patients with COPD-AI (Group × Time: P = 0.004). Despite a preserved increase in the C/F ratio, NG2+ pericyte coverage did not increase in patients with COPD in response to training, contrary to SHS (Group × Time: P = 0.011). Conversely to SHS serum, COPD serum altered pericyte morphology (P < 0.001) and drastically reduced MSC differentiation into pericytes (P < 0.001). Both functional capacities and pericyte coverage responses to exercise training are blunted in patients with COPD. We also provide direct evidence of the deleterious effect of COPD circulating factors on pericyte morphology and differentiation.NEW & NOTEWORTHY This work confirms the previously reported impairment in the functional response to exercise training of patients with COPD compared with SHS. Moreover, it shows for the first time that pericyte coverage of the skeletal capillaries is drastically reduced in patients with COPD compared with SHS during training-induced angiogenesis. Finally, it provides experimental evidence that circulating factors are involved in the impaired pericyte coverage of patients with COPD.


Asunto(s)
Terapia por Ejercicio/métodos , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Pericitos/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Anciano , Capilares/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiología , Pericitos/metabolismo , Pericitos/fisiología , Enfermedad Pulmonar Obstructiva Crónica/terapia
11.
Biochem Biophys Res Commun ; 525(4): 968-973, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32173533

RESUMEN

Myogenic differentiation mechanisms are generally assessed using a murine cell line placed in low concentrations of an animal-derived serum. To more closely approximate in vivo pathophysiological conditions, recent studies have combined the use of human muscle cells with human serum. Nevertheless, the in vitro studies of the effects of a human microenvironment on the differentiation process of human myoblasts require the identification of the culture conditions that would provide an optimal and reproducible differentiation process of human muscle cells. We assessed the differentiation variability resulting from the use of human myoblasts and serums from healthy subjects by measuring the myotube diameter, fusion index and surface covered by myotubes. We showed the preserved cell-dependent variability of the differentiation response of myoblasts cultured in human serums compared to FBS. We found that using a pool of serums reduced the serum-dependent variability of the myogenic response compared to individual serums. We validated our methodology by showing the atrophying effect of pooled serums from COPD patients on healthy human myotubes. By replacing animal-derived tissues with human myoblasts and serums, and by validating the sensitivity of cultured human muscle cells to a pathological microenvironment, this human cell culture model offers a valuable tool for studying the role of the microenvironment in chronic disease.


Asunto(s)
Desarrollo de Músculos/efectos de los fármacos , Mioblastos/citología , Suero/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Persona de Mediana Edad , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Suero/metabolismo , Albúmina Sérica Bovina/farmacología
12.
ERJ Open Res ; 6(1)2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32154290

RESUMEN

This article contains highlights and a selection of the scientific advances from the European Respiratory Society's General Pneumology Assembly that were presented at the 2019 European Respiratory Society International Congress in Madrid, Spain. The most relevant topics from the different groups will be discussed, covering a wide range of areas including rehabilitation and chronic care, general practice and primary care and M-health and E-health. In this review, the newest research and actual data as well as award-winning abstracts and highlight sessions will be discussed.

13.
Respir Res ; 20(1): 278, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31806021

RESUMEN

Chronic obstructive pulmonary disease (COPD) is associated with exercise intolerance and limits the functional gains in response to exercise training in patients compared to sedentary healthy subjects (SHS). The blunted skeletal muscle angiogenesis previously observed in COPD patients has been linked to these limited functional improvements, but its underlying mechanisms, as well as the potential role of oxidative stress, remain poorly understood. Therefore, we compared ultrastructural indexes of angiogenic process and capillary remodelling by transmission electron microscopy in 9 COPD patients and 7 SHS after 6 weeks of individualized moderate-intensity endurance training. We also assessed oxidative stress by plasma-free and esterified isoprostane (F2-IsoP) levels in both groups. We observed a capillary basement membrane thickening in COPD patients only (p = 0.008) and abnormal variations of endothelial nucleus density in response to exercise training in these patients when compared to SHS (p = 0.042). COPD patients had significantly fewer occurrences of pericyte/endothelium interdigitations, a morphologic marker of capillary maturation, than SHS (p = 0.014), and significantly higher levels of F2-IsoP (p = 0.048). Last, the changes in pericyte/endothelium interdigitations and F2-IsoP levels in response to exercise training were negatively correlated (r = - 0.62, p = 0.025). This study is the first to show abnormal capillary remodelling and to reveal impairments during the whole process of angiogenesis (capillary creation and maturation) in COPD patients. TRIAL REGISTRATION: NCT01183039 & NCT01183052, both registered 7 August 2010 (retrospectively registered).


Asunto(s)
Terapia por Ejercicio/métodos , Músculo Esquelético/efectos de los fármacos , Neovascularización Fisiológica/fisiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/rehabilitación , Inductores de la Angiogénesis/administración & dosificación , Biopsia con Aguja , Capilares/patología , Ejercicio Físico , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Músculo Esquelético/irrigación sanguínea , Estrés Oxidativo , Valores de Referencia , Remodelación Vascular
14.
BMC Med Educ ; 19(1): 424, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729989

RESUMEN

BACKGROUND: Over-testing of patients is a significant problem in clinical medicine that can be tackled by education. Clinical reasoning learning (CRL) is a potentially relevant method for teaching test ordering and interpretation. The feasibility might be improved by using an interactive whiteboard (IWB) during the CRL sessions to enhance student perceptions and behaviours around diagnostic tests. Overall, IWB/CRL could improve their skills. METHODS: Third-year undergraduate medical students enrolled in a vertically integrated curriculum were randomized into two groups before clinical placement in either a respiratory disease or respiratory physiology unit: IWB-based CRL plus clinical mentoring (IWB/CRL + CM: n = 40) or clinical mentoring only (CM-only: n = 40). Feasibility and learning outcomes were assessed. In addition, feedback via questionnaire of the IWB students and their classmates (n = 233) was compared. RESULTS: Analyses of the IWB/CRL sessions (n = 40, 27 paperboards) revealed that they met validated learning objectives. Students perceived IWB as useful and easy to use. After the IWB/CRL + CM sessions, students mentioned more hypothesis-based indications in a test ordering file (p <  0.001) and looked for more nonclinical signs directly on raw data tests (p <  0.01) compared with students in the CM-only group. Last, among students who attended pre- and post-assessments (n = 23), the number of diagnostic tests ordered did not change in the IWB/CRL + CM group (+ 7%; p = N.S), whereas it increased among CM-only students (+ 30%; p <  0.001). Test interpretability increased significantly in the IWB/CRL + CM group (from 4.7 to 37.2%; p <  0.01) but not significantly in the CM-only group (from 2.4 to 9.8%; p = 0.36). CONCLUSIONS: Integrating IWB into CRL sessions is feasible to teach test ordering and interpretation to undergraduate students. Moreover, student feedback and prospective assessment suggested a positive impact of IWB/CRL sessions on students' learning.


Asunto(s)
Pruebas Diagnósticas de Rutina , Educación de Pregrado en Medicina , Pautas de la Práctica en Medicina , Estudiantes de Medicina , Enseñanza , Pensamiento , Femenino , Humanos , Masculino , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...