Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(6): e0253197, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34138902

RESUMEN

The mechanism of pathogenesis associated with APOL1 polymorphisms and risk for non-diabetic chronic kidney disease (CKD) is not fully understood. Prior studies have minimized a causal role for the circulating APOL1 protein, thus efforts to understand kidney pathogenesis have focused on APOL1 expressed in renal cells. Of the kidney cells reported to express APOL1, the proximal tubule expression patterns are inconsistent in published reports, and whether APOL1 is synthesized by the proximal tubule or possibly APOL1 protein in the blood is filtered and reabsorbed by the proximal tubule remains unclear. Using both protein and mRNA in situ methods, the kidney expression pattern of APOL1 was examined in normal human and APOL1 bacterial artificial chromosome transgenic mice with and without proteinuria. APOL1 protein and mRNA was detected in podocytes and endothelial cells, but not in tubular epithelia. In the setting of proteinuria, plasma APOL1 protein did not appear to be filtered or reabsorbed by the proximal tubule. A side-by-side examination of commercial antibodies used in prior studies suggest the original reports of APOL1 in proximal tubules likely reflects antibody non-specificity. As such, APOL1 expression in podocytes and endothelia should remain the focus for mechanistic studies in the APOL1-mediated kidney diseases.


Asunto(s)
Apolipoproteína L1/metabolismo , Túbulos Renales Proximales/metabolismo , Proteinuria/metabolismo , Alelos , Animales , Apolipoproteína L1/genética , Células Endoteliales/metabolismo , Humanos , Riñón , Hígado/metabolismo , Ratones , Ratones Transgénicos , Podocitos/metabolismo , Proteinuria/genética
2.
Physiol Rep ; 5(23)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29192064

RESUMEN

The renal podocyte is central to the filtration function of the kidney that is dependent on maintaining both highly organized, branched cell structures forming foot processes, and a unique cell-cell junction, the slit diaphragm. Our recent studies investigating the developmental formation of the slit diaphragm identified a novel claudin family tetraspannin, TM4SF10, which is a binding partner for ADAP (also known as Fyn binding protein Fyb). To investigate the role of ADAP in podocyte function in relation to Fyn and TM4SF10, we examined ADAP knockout (KO) mice and podocytes. ADAP KO mice developed glomerular pathology that began as hyalinosis and progressed to glomerulosclerosis, with aged male animals developing low levels of albuminuria. Podocyte cell lines established from the KO mice had slower attachment kinetics compared to wild-type cells, although this did not affect the total number of attached cells nor the ability to form focal contacts. After attachment, the ADAP KO cells did not attain typical podocyte morphology, lacking the elaborate cell protrusions typical of wild-type podocytes, with the actin cytoskeleton forming circumferential stress fibers. The absence of ADAP did not alter Fyn levels nor were there differences between KO and wild-type podocytes in the reduction of Fyn activating phosphorylation events with puromycin aminonucleoside treatment. In the setting of endogenous TM4SF10 overexpression, the absence of ADAP altered the formation of cell-cell contacts containing TM4SF10. These studies suggest ADAP does not alter Fyn activity in podocytes, but appears to mediate downstream effects of Fyn controlled by TM4SF10 involving actin cytoskeleton organization.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Podocitos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular , Femenino , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Podocitos/ultraestructura , Proteinuria/genética , Proteinuria/metabolismo , Proteinuria/patología , Proteínas Proto-Oncogénicas c-fyn/metabolismo
3.
Cell Signal ; 39: 66-73, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28757353

RESUMEN

Mixed Lineage Kinase 3 (MLK3), a member of the MLK subfamily of protein kinases, is a mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) that activates MAPK signalling pathways and regulates cellular responses such as proliferation, invasion and apoptosis. MLK4ß, another member of the MLK subfamily, is less extensively studied, and the regulation of MLK4ß by stress stimuli is not known. In this study, the regulation of MLK4ß and MLK3 by osmotic stress, thermostress and heat shock protein 90 (Hsp90) inhibition was investigated in ovarian cancer cells. MLK3 and MLK4ß protein levels declined under conditions of prolonged osmotic stress, heat stress or exposure to the Hsp90 inhibitor geldanamycin (GA); and MLK3 protein declined faster than MLK4ß. Similar to MLK3, the reduction in MLK4ß protein in cells exposed to heat or osmotic stresses occurred via a mechanism that involves the E3 ligase, carboxy-terminus of Hsc70-interacting protein (CHIP). Both heat shock protein 70 (Hsp70) and CHIP overexpression led to polyubiquitination and a decrease in endogenous MLK4ß protein, and MLK4ß was ubiquitinated by CHIP in vitro. In untreated cells and cells exposed to osmotic and heat stresses for short time periods, small interfering RNA (siRNA) knockdown of MLK4ß elevated the levels of activated MLK3, c-Jun N-terminal kinase (JNK) and p38 MAPKs. Furthermore, MLK3 binds to MLK4ß, and this association is regulated by osmotic stress. These results suggest that in the early response to stressful stimuli, MLK4ß-MLK3 binding is important for regulating MLK3 activity and MAPK signalling, and after prolonged periods of stress exposure, MLK4ß and MLK3 proteins decline via CHIP-dependent degradation. These findings provide insight into how heat and osmotic stresses regulate MLK4ß and MLK3, and reveal an important function for MLK4ß in modulating MLK3 activity in stress responses.


Asunto(s)
Respuesta al Choque Térmico , Quinasas Quinasa Quinasa PAM/metabolismo , Presión Osmótica , Neoplasias Ováricas/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Benzoquinonas/farmacología , Línea Celular Tumoral , Femenino , Células HEK293 , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Lactamas Macrocíclicas/farmacología , Quinasas Quinasa Quinasa PAM/genética , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
4.
Mol Cell Biol ; 34(16): 3132-43, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24912674

RESUMEN

Mixed-lineage kinase 3 (MLK3) activates mitogen-activated protein kinase (MAPK) signaling pathways and has important functions in migration, invasion, proliferation, tumorigenesis, and apoptosis. We investigated the role of the E3 ligase carboxyl terminus of Hsc70-interacting protein (CHIP) in the regulation of MLK3 protein levels. We show that CHIP interacts with MLK3 and, together with the E2 ubiquitin-conjugating enzyme UbcH5 (UbcH5a, -b, -c, or -d), ubiquitinates MLK3 in vitro. CHIP or Hsp70 overexpression promoted endogenous MLK3 ubiquitination and induced a decline in MLK3 protein levels in cells with Hsp90 inhibition. Furthermore, CHIP overexpression caused a proteasome-dependent reduction in exogenous MLK3 protein. Geldanamycin (GA), heat shock, and osmotic shock treatments also reduced the level of MLK3 protein via a CHIP-dependent mechanism. In addition, CHIP depletion in ovarian cancer SKOV3 cells increased cell invasion, and the enhancement of invasiveness was abrogated by small interfering RNA (siRNA)-mediated knockdown of MLK3. Thus, CHIP modulates MLK3 protein levels in response to GA and stress stimuli, and CHIP-dependent regulation of MLK3 is required for suppression of SKOV3 ovarian cancer cell invasion.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Ubiquitina-Proteína Ligasas/genética , Benzoquinonas/farmacología , Línea Celular Tumoral , Movimiento Celular/genética , Inhibidores Enzimáticos/farmacología , Células HEK293 , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP90 de Choque Térmico/biosíntesis , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Humanos , Lactamas Macrocíclicas/farmacología , Quinasas Quinasa Quinasa PAM/biosíntesis , Quinasas Quinasa Quinasa PAM/genética , Sistema de Señalización de MAP Quinasas , Invasividad Neoplásica , Presión Osmótica , Unión Proteica , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Interferente Pequeño , Sorbitol/farmacología , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/biosíntesis , Ubiquitinación , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...