Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 33
1.
J Chem Phys ; 160(9)2024 Mar 07.
Article En | MEDLINE | ID: mdl-38450733

We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe-Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn-Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.

2.
Angew Chem Int Ed Engl ; 62(3): e202214383, 2023 Jan 16.
Article En | MEDLINE | ID: mdl-36374271

Zero-gap anion exchange membrane (AEM)-based CO2 electrolysis is a promising technology for CO production, however, their performance at elevated current densities still suffers from the low local CO2 concentration due to heavy CO2 neutralization. Herein, via modulating the CO2 feed mode and quantitative analyzing CO2 utilization with the aid of mass transport modeling, we develop a descriptor denoted as the surface-accessible CO2 concentration ([CO2 ]SA ), which enables us to indicate the transient state of the local [CO2 ]/[OH- ] ratio and helps define the limits of CO2 -to-CO conversion. To enrich the [CO2 ]SA , we developed three general strategies: (1) increasing catalyst layer thickness, (2) elevating CO2 pressure, and (3) applying a pulsed electrochemical (PE) method. Notably, an optimized PE method allows to keep the [CO2 ]SA at a high level by utilizing the dynamic balance period of CO2 neutralization. A maximum jCO of 368±28 mA cmgeo -2 was achieved using a commercial silver catalyst.

3.
J Comput Chem ; 42(28): 2004-2013, 2021 Oct 30.
Article En | MEDLINE | ID: mdl-34406661

The predictive power of density functional theory for materials properties can be improved without increasing the overall computational complexity by extending the generalized gradient approximation (GGA) for electronic exchange and correlation to density functionals depending on the electronic kinetic energy density in addition to the charge density and its gradient, resulting in a meta-GGA. Here, we propose an empirical meta-GGA model that is based both on physical constraints and on experimental and quantum chemistry reference data. The resulting optimized meta-GGA MCML yields improved surface and gas phase reaction energetics without sacrificing the accuracy of bulk property predictions of existing meta-GGA approaches.

4.
J Chem Phys ; 153(23): 234116, 2020 Dec 21.
Article En | MEDLINE | ID: mdl-33353332

Local optimization of adsorption systems inherently involves different scales: within the substrate, within the molecule, and between the molecule and the substrate. In this work, we show how the explicit modeling of different characteristics of the bonds in these systems improves the performance of machine learning methods for optimization. We introduce an anisotropic kernel in the Gaussian process regression framework that guides the search for the local minimum, and we show its overall good performance across different types of atomic systems. The method shows a speed-up of up to a factor of two compared with the fastest standard optimization methods on adsorption systems. Additionally, we show that a limited memory approach is not only beneficial in terms of overall computational resources but can also result in a further reduction of energy and force calculations.

5.
Phys Chem Chem Phys ; 22(10): 5969-5975, 2020 Mar 11.
Article En | MEDLINE | ID: mdl-32123887

Many breakthroughs have been achieved in rechargeable aluminum-ion battery technologies in recent years. Most recently, operando X-ray diffraction (XRD) combined with density functional theory (DFT) calculations was reported to study the chloroaluminate anion (AlCl4-)-intercalated graphite cathode of the battery. However, there are quite a few discrepancies between the measured and simulated XRD patterns. This work is focused on the simulation of XRD patterns of graphite intercalation compounds (GICs) with DFT calculations. Our results reveal that both the geometry of AlCl4- in graphite and the gallery height of GICs are dependent on the intercalant density. At low intercalant density, the gallery height keeps constant, but at high intercalant densities, the gallery height is linearly related to the intercalant density. Our simulated XRD patterns are highly consistent with the measured operando XRD patterns. Not only do the angles of the peaks match very well, but also the relative intensities and the corresponding electrode capacities show reasonable agreement with the experimental results. The DFT simulation of the XRD pattern provides significant information on the stage index and the charge capacity of the GIC electrode.

6.
Chem Sci ; 11(32): 8517-8532, 2020 Jul 30.
Article En | MEDLINE | ID: mdl-34123112

We present an end-to-end computational system for autonomous materials discovery. The system aims for cost-effective optimization in large, high-dimensional search spaces of materials by adopting a sequential, agent-based approach to deciding which experiments to carry out. In choosing next experiments, agents can make use of past knowledge, surrogate models, logic, thermodynamic or other physical constructs, heuristic rules, and different exploration-exploitation strategies. We show a series of examples for (i) how the discovery campaigns for finding materials satisfying a relative stability objective can be simulated to design new agents, and (ii) how those agents can be deployed in real discovery campaigns to control experiments run externally, such as the cloud-based density functional theory simulations in this work. In a sample set of 16 campaigns covering a range of binary and ternary chemistries including metal oxides, phosphides, sulfides and alloys, this autonomous platform found 383 new stable or nearly stable materials with no intervention by the researchers.

7.
Phys Rev Lett ; 122(15): 156001, 2019 Apr 19.
Article En | MEDLINE | ID: mdl-31050513

We present the incorporation of a surrogate Gaussian process regression (GPR) atomistic model to greatly accelerate the rate of convergence of classical nudged elastic band (NEB) calculations. In our surrogate model approach, the cost of converging the elastic band no longer scales with the number of moving images on the path. This provides a far more efficient and robust transition state search. In contrast to a conventional NEB calculation, the algorithm presented here eliminates any need for manipulating the number of images to obtain a converged result. This is achieved by inventing a new convergence criteria that exploits the probabilistic nature of the GPR to use uncertainty estimates of all images in combination with the force in the saddle point in the target model potential. Our method is an order of magnitude faster in terms of function evaluations than the conventional NEB method with no accuracy loss for the converged energy barrier values.

8.
Sci Data ; 6(1): 76, 2019 May 28.
Article En | MEDLINE | ID: mdl-31138814

A comprehensive database of chemical properties on a vast set of transition metal surfaces has the potential to accelerate the discovery of novel catalytic materials for energy and industrial applications. In this data descriptor, we present such an extensive study of chemisorption properties of important adsorbates - e.g., C, O, N, H, S, CHx, OH, NH, and SH - on 2,035 bimetallic alloy surfaces in 5 different stoichiometric ratios, i.e., 0%, 25%, 50%, 75%, and 100%. To our knowledge, it is the first systematic study to compile the adsorption properties of such a well-defined, large chemical space of catalytic interest. We propose that a collection of catalytic properties of this magnitude can assist with the development of machine learning enabled surrogate models in theoretical catalysis research to design robust catalysts with high activity for challenging chemical transformations. This database is made publicly available through the platform www.Catalysis-hub.org for easy retrieval of the data for further scientific analysis.

9.
Sci Data ; 6(1): 75, 2019 May 28.
Article En | MEDLINE | ID: mdl-31138816

We present a new open repository for chemical reactions on catalytic surfaces, available at https://www.catalysis-hub.org . The featured database for surface reactions contains more than 100,000 chemisorption and reaction energies obtained from electronic structure calculations, and is continuously being updated with new datasets. In addition to providing quantum-mechanical results for a broad range of reactions and surfaces from different publications, the database features a systematic, large-scale study of chemical adsorption and hydrogenation on bimetallic alloy surfaces. The database contains reaction specific information, such as the surface composition and reaction energy for each reaction, as well as the surface geometries and calculational parameters, essential for data reproducibility. By providing direct access via the web-interface as well as a Python API, we seek to accelerate the discovery of catalytic materials for sustainable energy applications by enabling researchers to efficiently use the data as a basis for new calculations and model generation.

10.
J Phys Chem A ; 123(11): 2281-2285, 2019 Mar 21.
Article En | MEDLINE | ID: mdl-30802053

We present a methodology for graph based enumeration of surfaces and unique chemical adsorption structures bonded to those surfaces. Utilizing the graph produced from a bulk structure, we create a unique graph representation for any general slab cleave and further extend that representation to include a large variety of catalytically relevant adsorbed molecules. We also demonstrate simple geometric procedures to generate 3D initial guesses of these enumerated structures. While generally useful for generating a wide variety of structures used in computational surface science and heterogeneous catalysis, these techniques are also key to facilitating an informatics approach to the high-throughput search for more effective catalysts.

11.
J Chem Theory Comput ; 14(3): 1583-1593, 2018 Mar 13.
Article En | MEDLINE | ID: mdl-29357239

Mean-field microkinetic models in combination with Brønsted-Evans-Polanyi like scaling relations have proven highly successful in identifying catalyst materials with good or promising reactivity and selectivity. Analysis of the microkinetic model by means of lattice kinetic Monte Carlo promises a faithful description of a range of atomistic features involving short-range ordering of species in the vicinity of an active site. In this paper, we use the "fruit fly" example reaction of CO oxidation on fcc(111) transition and coinage metals to motivate and develop a lattice kinetic Monte Carlo solver suitable for the numerically challenging case of vastly disparate rate constants. As a result, we show that for the case of infinitely fast diffusion and absence of adsorbate-adsorbate interaction it is, in fact, possible to match the prediction of the mean-field-theory method and the lattice kinetic Monte Carlo method. As a corollary, we conclude that lattice kinetic Monte Carlo simulations of surface chemical reactions are most likely to provide additional insight over mean-field simulations if diffusion limitations or adsorbate-adsorbate interactions have a significant influence on the mixing of the adsorbates.

12.
Angew Chem Int Ed Engl ; 56(30): 8711-8715, 2017 07 17.
Article En | MEDLINE | ID: mdl-28510358

A novel nanoparticulate catalyst of copper (Cu) and ruthenium (Ru) was designed for low-temperature ammonia oxidation at near-stoichiometric mixtures using a bottom-up approach. A synergistic effect of the two metals was found. An optimum CuRu catalyst presents a reaction rate threefold higher than that for Ru and forty-fold higher than that for Cu. X-ray absorption spectroscopy suggests that in the most active catalyst Cu forms one or two monolayer thick patches on Ru and the catalysts are less active once 3D Cu islands form. The good performance of the tuned Cu/Ru catalyst is attributed to changes in the electronic structure, and thus the altered adsorption properties of the surface Cu sites.

13.
Nat Commun ; 8: 14621, 2017 03 06.
Article En | MEDLINE | ID: mdl-28262694

Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying these methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.

14.
J Am Chem Soc ; 138(11): 3705-14, 2016 Mar 23.
Article En | MEDLINE | ID: mdl-26958997

Synthesis gas (CO + H2) conversion is a promising route to converting coal, natural gas, or biomass into synthetic liquid fuels. Rhodium has long been studied as it is the only elemental catalyst that has demonstrated selectivity to ethanol and other C2+ oxygenates. However, the fundamentals of syngas conversion over rhodium are still debated. In this work a microkinetic model is developed for conversion of CO and H2 into methane, ethanol, and acetaldehyde on the Rh (211) and (111) surfaces, chosen to describe steps and close-packed facets on catalyst particles. The model is based on DFT calculations using the BEEF-vdW functional. The mean-field kinetic model includes lateral adsorbate-adsorbate interactions, and the BEEF-vdW error estimation ensemble is used to propagate error from the DFT calculations to the predicted rates. The model shows the Rh(211) surface to be ∼6 orders of magnitude more active than the Rh(111) surface, but highly selective toward methane, while the Rh(111) surface is intrinsically selective toward acetaldehyde. A variety of Rh/SiO2 catalysts are synthesized, tested for catalytic oxygenate production, and characterized using TEM. The experimental results indicate that the Rh(111) surface is intrinsically selective toward acetaldehyde, and a strong inverse correlation between catalytic activity and oxygenate selectivity is observed. Furthermore, iron impurities are shown to play a key role in modulating the selectivity of Rh/SiO2 catalysts toward ethanol. The experimental observations are consistent with the structure-sensitivity predicted from theory. This work provides an improved atomic-scale understanding and new insight into the mechanism, active site, and intrinsic selectivity of syngas conversion over rhodium catalysts and may also guide rational design of alloy catalysts made from more abundant elements.

15.
Phys Chem Chem Phys ; 16(36): 19250-7, 2014 Sep 28.
Article En | MEDLINE | ID: mdl-25098811

The development of improved catalysts for the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) in basic electrolytes remains a major technical obstacle to improved fuel cells, water electrolyzers, and other devices for electrochemical energy storage and conversion. Based on the free energy of adsorbed hydrogen intermediates, theory predicts that alloys of nickel and silver are active for these reactions. In this work, we synthesize binary nickel-silver bulk alloys across a range of compositions and show that nickel-silver alloys are indeed more active than pure nickel for hydrogen evolution and, possibly, hydrogen oxidation. To overcome the mutual insolubility of silver and nickel, we employ electron-beam physical vapor codeposition, a low-temperature synthetic route to metastable alloys. This method also produces flat and uniform films that facilitate the measurement of intrinsic catalytic activity with minimal variations in the surface area, ohmic contact, and pore transport. Rotating-disk-electrode measurements demonstrate that the hydrogen evolution activity per geometric area of the most active catalyst in this study, Ni0.75Ag0.25, is approximately twice that of pure nickel and has comparable stability and hydrogen oxidation activity. Our experimental results are supported by density functional theory calculations, which show that bulk alloying of Ni and Ag creates a variety of adsorption sites, some of which have near-optimal hydrogen binding energy.

16.
Science ; 345(6193): 197-200, 2014 Jul 11.
Article En | MEDLINE | ID: mdl-25013071

We introduce a general method for estimating the uncertainty in calculated materials properties based on density functional theory calculations. We illustrate the approach for a calculation of the catalytic rate of ammonia synthesis over a range of transition-metal catalysts. The correlation between errors in density functional theory calculations is shown to play an important role in reducing the predicted error on calculated rates. Uncertainties depend strongly on reaction conditions and catalyst material, and the relative rates between different catalysts are considerably better described than the absolute rates. We introduce an approach for incorporating uncertainty when searching for improved catalysts by evaluating the probability that a given catalyst is better than a known standard.

17.
J Chem Phys ; 140(14): 144107, 2014 Apr 14.
Article En | MEDLINE | ID: mdl-24735288

We present a general-purpose meta-generalized gradient approximation (MGGA) exchange-correlation functional generated within the Bayesian error estimation functional framework [J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012)]. The functional is designed to give reasonably accurate density functional theory (DFT) predictions of a broad range of properties in materials physics and chemistry, while exhibiting a high degree of transferability. Particularly, it improves upon solid cohesive energies and lattice constants over the BEEF-vdW functional without compromising high performance on adsorption and reaction energies. We thus expect it to be particularly well-suited for studies in surface science and catalysis. An ensemble of functionals for error estimation in DFT is an intrinsic feature of exchange-correlation models designed this way, and we show how the Bayesian ensemble may provide a systematic analysis of the reliability of DFT based simulations.

18.
Phys Chem Chem Phys ; 15(9): 3279-85, 2013 Mar 07.
Article En | MEDLINE | ID: mdl-23358311

We have analyzed the aptitude of several metal oxide supports (TiO(2), SnO(2), NbO(2), ZrO(2), SiO(2), Ta(2)O(5) and Nb(2)O(5)) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum dissolution at high potentials and the interference of redispersion with normal working potential of the PEMFC cathode. We have calculated the PtO(x) (x = 0, 1, 2) adsorption energies on different metal oxides' surface terminations as well as inside the metal oxides' bulk, and we have concluded that NbO(2) might be a good support for platinum redispersion at PEMFC cathodes.

19.
Angew Chem Int Ed Engl ; 52(3): 776-7, 2013 Jan 14.
Article En | MEDLINE | ID: mdl-23212991
...