Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Neurocrit Care ; 40(2): 391-394, 2024 Apr.
Article En | MEDLINE | ID: mdl-37697130

Intracranial pressure is routinely monitored in most intensive care units caring for patients with severe neurological insults and, together with continuous arterial blood pressure measurement, allows for monitoring of cerebral perfusion pressure (CPP). CPP is the driving pressure of blood flow to the brain and is used to guide therapy. However, there is considerable inconsistency in the literature regarding how CPP is technically measured and, more specifically, the appropriate placement of the arterial pressure transducer. Depending on patient positioning and where the arterial pressure transducer is placed, the mean arterial pressure used for CPP calculation can vary widely by up to 15 mm Hg, which is greater than the acceptable variation in target ranges used clinically. Physiologically, the arterial pressure transducer should be placed at the level of the foramen of Monro for CPP measurement, but it is commonly set at the level of the right atrium for systematic measurement. Mean arterial pressure measurement at the level of the right atrium can lead to overestimation and potentially critically low actual CPP levels when the head is elevated, and measurement at the level of the foramen of Monro will underestimate systemic pressures, increasing the risk of excessive and unnecessary use of vasopressors and fluid. At the Karolinska University Hospital neurointensive care unit, we have used a split dual-transducer system, measuring arterial pressure both at the level of the foramen of Monro and at the level of the right atrium from a single arterial source. In doing so, we work with constants and can monitor and target optimum arterial pressures to better secure perfusion to all organs, with potentially less risk of cerebral ischemia or overuse of vasopressors and fluids, which may affect outcome.


Arterial Pressure , Cerebrovascular Circulation , Humans , Cerebrovascular Circulation/physiology , Arterial Pressure/physiology , Intracranial Pressure/physiology , Patient Positioning , Intensive Care Units , Vasoconstrictor Agents/therapeutic use , Blood Pressure/physiology , Monitoring, Physiologic
2.
Brain Res ; 1802: 148207, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36549360

Erythropoietin (EPO) has neuroprotective effects in central nervous system injury models. In clinical trials EPO has shown beneficial effects in traumatic brain injury (TBI) as well as in ischemic stroke. We have previously shown that EPO has short-term effects on astrocyte glutamatergic signaling in vitro and that administration of EPO after experimental TBI decreases early cytotoxic brain edema and preserves structural and functional properties of the blood-brain barrier. These effects have been attributed to preserved or restored astrocyte function. Here we explored the effects of EPO on astrocytes undergoing oxygen-glucose-deprivation, an in vitro model of ischemia. Measurements of glutamate uptake, intracellular pH, intrinsic NADH fluorescence, Na,K-ATPase activity, and lactate release were performed. We found that EPO within minutes caused a Na,K-ATPase-dependent increase in glutamate uptake, restored intracellular acidification caused by glutamate and increased lactate release. The effects on intracellular pH were dependent on the sodium/hydrogen exchanger NHE. In neuron-astrocyte co-cultures, EPO increased NADH production both in astrocytes and neurons, however the increase was greater in astrocytes. We suggest that EPO preserves astrocyte function under ischemic conditions and thus may contribute to neuroprotection in ischemic stroke and brain ischemia secondary to TBI.


Brain Injuries, Traumatic , Erythropoietin , Ischemic Stroke , Humans , Astrocytes , Sodium-Potassium-Exchanging ATPase , NAD , Ischemia , Glutamic Acid/pharmacology , Models, Theoretical
3.
Crit Care ; 25(1): 291, 2021 Aug 11.
Article En | MEDLINE | ID: mdl-34380543

BACKGROUND: External ventricular drain (EVD)-related infections (EVDIs) are feared complications that are difficult to rapidly and correctly diagnose, which can lead to unnecessary treatment with broad-spectrum antibiotics. No readily available diagnostic parameters have been identified to reliably predict or identify EVDIs. Moreover, intraventricular hemorrhage is common and affect cerebrospinal fluid (CSF) cellularity. The relationship between leukocytes and erythrocytes is often used to identify suspected infection and triggers the use of antibiotics pending results of cultures, which may take days. Cell count based surveillance diagnostics assumes a homogeneous distribution of cells in the CSF. Given the intraventricular sedimentation of erythrocytes on computed tomography scans this assumption may be erroneous and could affect diagnostics. AIMS: To evaluate the consistency of cell counts in serially sampled CSF from EVDs, with and without patient repositioning, to assess the effect on infection diagnostics. METHODS: We performed a prospective single-center study where routine CSF sampling was followed by a second sample after 10 min, allocated around a standard patient repositioning, or not. Changes in absolute and pairwise cell counts and ratios were analyzed, including mixed regression models. RESULTS: Data from 51 patients and 162 paired samples were analyzed. We observed substantial changes in CSF cellularity as the result of both resampling and repositioning, with repositioning found to be an independent predictor of bidirectional cellular change. Glucose and lactate levels were affected, however clinically non-significant. No positive CSF cultures were seen during the study. Thirty percent (30%) of patients changed suspected EVDI status, as defined by the cell component of local and national guidelines, when resampling after repositioning. CONCLUSIONS: CSF cell counts are not consistent and are affected by patient movement suggesting a heterogeneity in the intraventricular space. The relationship between leukocytes and erythrocytes was less affected than absolute changes. Importantly, cell changes are found to increase with increased cellularity, often leading to changes in suspected EVDI status. Faster and more precise diagnostics are needed, and methods such as emerging next generation sequencing techniques my provide tools to more timely and accurately guide antibiotic treatment. Trial Registration NCT04736407, Clinicaltrials.gov, retrospectively registered 2nd February 2021.


Cell Count/methods , Cerebrospinal Fluid/microbiology , Aged , Catheter-Related Infections/etiology , Cell Count/statistics & numerical data , Cerebral Ventricles/abnormalities , Cerebral Ventricles/microbiology , Cerebrospinal Fluid Leak/physiopathology , Female , Humans , Male , Middle Aged , Prospective Studies , Sweden
4.
BMC Neurosci ; 22(1): 31, 2021 04 29.
Article En | MEDLINE | ID: mdl-33926378

BACKGROUND: Protective ventilation with lower tidal volumes reduces systemic and organ-specific inflammation. In sepsis-induced encephalopathy or acute brain injury the use of protective ventilation has not been widely investigated (experimentally or clinically). We hypothesized that protective ventilation would attenuate cerebral inflammation in a porcine endotoxemic sepsis model. The aim of the study was to study the effect of tidal volume on cerebral inflammatory response, cerebral metabolism and brain injury. Nine animals received protective mechanical ventilation with a tidal volume of 6 mL × kg-1 and nine animals were ventilated with a tidal volume of 10 mL × kg-1. During a 6-h experiment, the pigs received an endotoxin intravenous infusion of 0.25 µg × kg-1 × h-1. Systemic, superior sagittal sinus and jugular vein blood samples were analysed for inflammatory cytokines and S100B. Intracranial pressure, brain tissue oxygenation and brain microdialysis were sampled every hour. RESULTS: No differences in systemic or sagittal sinus levels of TNF-α or IL-6 were seen between the groups. The low tidal volume group had increased cerebral blood flow (p < 0.001) and cerebral oxygen delivery (p < 0.001), lower cerebral vascular resistance (p < 0.05), higher cerebral metabolic rate (p < 0.05) along with higher cerebral glucose consumption (p < 0.05) and lactate production (p < 0.05). Moreover, low tidal volume ventilation increased the levels of glutamate (p < 0.01), glycerol (p < 0.05) and showed a trend towards higher lactate to pyruvate ratio (p = 0.08) in cerebral microdialysate as well as higher levels of S-100B (p < 0.05) in jugular venous plasma compared with medium-high tidal volume ventilation. CONCLUSIONS: Contrary to the hypothesis, protective ventilation did not affect inflammatory cytokines. The low tidal volume group had increased cerebral blood flow, cerebral oxygen delivery and cerebral metabolism together with increased levels of markers of brain injury compared with medium-high tidal volume ventilation.


Brain Injuries/metabolism , Brain/metabolism , Lung/physiology , Respiration, Artificial/methods , Sepsis/metabolism , Tidal Volume/physiology , Animals , Brain Injuries/therapy , Cerebrovascular Circulation/physiology , Male , Sepsis/therapy , Swine
5.
Emerg Med Int ; 2020: 4819805, 2020.
Article En | MEDLINE | ID: mdl-32377435

Treating deranged vital signs is a mainstay of critical care throughout the world. In an ICU in a university hospital in Tanzania, the implementation of the Vital Signs Directed Therapy Protocol in 2014 led to an increase in acute treatments for deranged vital signs. The mortality rate for hypotensive patients decreased from 92% to 69%. In this study, the aim was to investigate the sustainability of the implementation two years later. An observational, patient-record-based study was conducted in the ICU in August 2016. Data on deranged vital signs and acute treatments were extracted from the patients' charts. Adherence to the protocol, defined as an acute treatment in the same or subsequent hour following a deranged vital sign, was calculated and compared with before and immediately after implementation. Two-hundred and eighty-nine deranged vital signs were included. Adherence was 29.8% two years after implementation, compared with 16.6% (p < 0.001) immediately after implementation and 2.9% (p < 0.001) before implementation. Consequently, the implementation of the Vital Signs Directed Therapy Protocol appears to have led to a sustainable increase in the treatment of deranged vital signs. The protocol may have potential to improve patient safety in other settings where critically ill patients are managed.

6.
J Neurotrauma ; 35(4): 671-680, 2018 02 15.
Article En | MEDLINE | ID: mdl-29179621

Erythropoietin (EPO) has neuroprotective effects in multiple central nervous system (CNS) injury models; however EPO's effects on traumatic brain edema are elusive. To explore EPO as an intervention in traumatic brain edema, male Sprague-Dawley (SD) rats were subjected to blunt, controlled traumatic brain injury (TBI). Animals were randomized to EPO 5000 IU/kg or saline (control group) intraperitoneally within 30 min after trauma and once daily for 4 consecutive days. Brain MRI, immunohistofluorescence, immunohistochemistry, and quantitative protein analysis were performed at days 1 and 4 post- trauma. EPO significantly prevented the loss of the tight junction protein zona occludens 1 (ZO-1) observed in control animals after trauma. The decrease of ZO-1 in the control group was associated with an immunoglobulin (Ig)G increase in the perilesional parenchyma, indicating blood-brain barrier (BBB) dysfunction and increased permeability. EPO treatment attenuated decrease in apparent diffusion coefficient (ADC) after trauma, suggesting a reduction of cytotoxic edema, and reduced the IgG leakage, indicating that EPO contributed to preserve BBB integrity and attenuated vasogenic edema. Animals treated with EPO demonstrated conserved levels of aquaporin 4 (AQP4) protein expression in the perilesional area, whereas control animals showed a reduction of AQP4. We show that post TBI administration of EPO decreases early cytotoxic brain edema and preserves structural and functional properties of the BBB, leading to attenuation of the vasogenic edema response. The data support that the mechanisms involve preservation of the tight junction protein ZO-1 and the water channel AQP4, and indicate that treatment with EPO may have beneficial effects on the brain edema response following TBI.


Brain Edema/pathology , Brain Injuries, Traumatic/pathology , Brain/drug effects , Epoetin Alfa/pharmacology , Hematinics/pharmacology , Animals , Blood-Brain Barrier/drug effects , Brain/pathology , Brain Edema/etiology , Brain Injuries, Traumatic/complications , Male , Random Allocation , Rats , Rats, Sprague-Dawley
8.
PLoS One ; 10(12): e0144801, 2015.
Article En | MEDLINE | ID: mdl-26693728

BACKGROUND: Global Critical Care is attracting increasing attention. At several million deaths per year, the worldwide burden of critical illness is greater than generally appreciated. Low income countries (LICs) have a disproportionally greater share of critical illness, and yet critical care facilities are scarce in such settings. Routines utilizing abnormal vital signs to identify critical illness and trigger medical interventions have become common in high-income countries but have not been investigated in LICs. The aim of the study was to assess whether the introduction of a vital signs directed therapy protocol improved acute care and reduced mortality in an Intensive Care Unit (ICU) in Tanzania. METHODS AND FINDINGS: Prospective, before-and-after interventional study in the ICU of a university hospital in Tanzania. A context-appropriate protocol that defined danger levels of severely abnormal vital signs and stipulated acute treatment responses was implemented in a four week period using sensitisation, training, job aids, supervision and feedback. Acute treatment of danger signs at admission and during care in the ICU and in-hospital mortality were compared pre and post-implementation using regression models. Danger signs from 447 patients were included: 269 pre-implementation and 178 post-implementation. Acute treatment of danger signs was higher post-implementation (at admission: 72.9% vs 23.1%, p<0.001; in ICU: 16.6% vs 2.9%, p<0.001). A danger sign was five times more likely to be treated post-implementation (Prevalence Ratio (PR) 4.9 (2.9-8.3)). Intravenous fluids were given in response to 35.0% of hypotensive episodes post-implementation, as compared to 4.1% pre-implementation (PR 6.4 (2.5-16.2)). In patients admitted with hypotension, mortality was lower post-implementation (69.2% vs 92.3% p = 0.02) giving a numbers-needed-to-treat of 4.3. Overall in-hospital mortality rates were unchanged (49.4% vs 49.8%, p = 0.94). CONCLUSION: The introduction of a vital signs directed therapy protocol improved the acute treatment of abnormal vital signs in an ICU in a low-income country. Mortality rates were reduced for patients with hypotension at admission but not for all patients.


Critical Care/methods , Critical Illness/therapy , Hospital Mortality/trends , Vital Signs/physiology , Adult , Critical Illness/mortality , Female , Humans , Hypotension/mortality , Intensive Care Units , Male , Middle Aged , Poverty , Prospective Studies , Regression Analysis , Tanzania
9.
BMC Res Notes ; 8: 313, 2015 Jul 25.
Article En | MEDLINE | ID: mdl-26205670

BACKGROUND: Critical care saves lives of the young with reversible disease. Little is known about critical care services in low-income countries. In a setting with a shortage of doctors the actions of the nurse bedside are likely to have a major impact on the outcome of critically ill patients with rapidly changing physiology. Identification of severely deranged vital signs and subsequent treatment modifications are the basis of modern routines in critical care, for example goal directed therapy and rapid response teams. This study assesses how often severely deranged vital signs trigger an acute treatment modification on an Intensive Care Unit (ICU) in Tanzania. METHODS: A medical records based, observational study. Vital signs (conscious level, respiratory rate, oxygen saturation, heart rate and systolic blood pressure) were collected as repeated point prevalences three times per day in a 1-month period for all adult patients on the ICU. Severely deranged vital signs were identified and treatment modifications within 1 h were noted. RESULTS: Of 615 vital signs studied, 126 (18%) were severely deranged. An acute treatment modification was in total indicated in 53 situations and was carried out three times (6%) (2/32 for hypotension, 0/8 for tachypnoea, 1/6 for tachycardia, 0/4 for unconsciousness and 0/3 for hypoxia). CONCLUSIONS: This study suggests that severely deranged vital signs are common and infrequently lead to acute treatment modifications on an ICU in a low-income country. There may be potential to improve outcome if nurses are guided to administer acute treatment modifications by using a vital sign directed approach. A prospective study of a vital sign directed therapy protocol is underway.


Hypotension/diagnosis , Hypoxia/diagnosis , Nurse Practitioners/psychology , Tachycardia/diagnosis , Tachypnea/diagnosis , Unconsciousness/diagnosis , Adult , Blood Pressure , Critical Illness , Developing Countries , Disease Management , Female , Heart Rate , Humans , Hypotension/physiopathology , Hypotension/therapy , Hypoxia/physiopathology , Hypoxia/therapy , Intensive Care Units , Male , Middle Aged , Quality of Health Care/statistics & numerical data , Respiratory Rate , Tachycardia/physiopathology , Tachycardia/therapy , Tachypnea/physiopathology , Tachypnea/therapy , Tanzania , Unconsciousness/physiopathology , Unconsciousness/therapy
10.
Crit Care Med ; 43(10): 2171-9, 2015 Oct.
Article En | MEDLINE | ID: mdl-26154933

OBJECTIVE: To investigate whether deranged physiologic parameters at admission to an ICU in Tanzania are associated with in-hospital mortality and compare single deranged physiologic parameters to a more complex scoring system. DESIGN: Prospective, observational cohort study of patient notes and admission records. Data were collected on vital signs at admission to the ICU, patient characteristics, and outcomes. Cutoffs for deranged physiologic parameters were defined a priori and their association with in-hospital mortality was analyzed using multivariable logistic regression. SETTING: ICU at Muhimbili National Hospital, Dar es Salaam, Tanzania. PATIENTS: All adults admitted to the ICU in a 15-month period. MEASUREMENTS AND MAIN RESULTS: Two hundred sixty-nine patients were included: 54% female, median age 35 years. In-hospital mortality was 50%. At admission, 69% of patients had one or more deranged physiologic parameter. Sixty-four percent of the patients with a deranged physiologic parameter died in hospital compared with 18% without (p < 0.001). The presence of a deranged physiologic parameter was associated with mortality (adjusted odds ratio, 4.64; 95% CI, 1.95-11.09). Mortality increased with increasing number of deranged physiologic parameters (odds ratio per deranged physiologic parameter, 2.24 [1.53-3.26]). Every individual deranged physiologic parameter was associated with mortality with unadjusted odds ratios between 1.92 and 16.16. A National Early Warning Score of greater than or equal to 7 had an association with mortality (odds ratio, 2.51 [1.23-5.14]). CONCLUSION: Single deranged physiologic parameters at admission are associated with mortality in a critically ill population in a low-income country. As a measure of illness severity, single deranged physiologic parameters are as useful as a compound scoring system in this setting and could be termed "danger signs." Danger signs may be suitable for the basis of routines to identify and treat critically ill patients.


Critical Illness/mortality , Hospital Mortality , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Intensive Care Units , Male , Middle Aged , Poverty , Prospective Studies , Severity of Illness Index , Tanzania , Young Adult
11.
Brain Res ; 1611: 18-28, 2015 Jun 22.
Article En | MEDLINE | ID: mdl-25770057

Traumatic brain injury (TBI) is a major contributor to mortality and morbidity. The pathophysiology involves development of brain edema. Therapeutic options are limited as the mechanisms are not fully understood. Changes in the function of the blood-brain barrier (BBB), as well as variations in aquaporin expression, have been proposed to be involved in the development of the edema but the contribution of each factor has not been fully elucidated. In order to evaluate these mechanisms, in a potential window of opportunity, the early dynamic response was studied using an animal model causing a moderate TBI. Sprague-Dawley rats were subjected to blunt controlled head trauma and followed for up to four days by magnetic-resonance-imaging, immunohistofluorescence, immunohistochemistry, and quantitative protein analysis. Non-traumatized animals served as controls. TBI resulted in a midline shift and a decrease in Apparent Diffusion Coefficient, indicating a hemispheric enlargement due to cytotoxic edema. The tight junction protein Zona Occludens-1 was decreased (-25%) and associated with an increased IgG permeability (+20%) in the perilesional brain tissue in accordance with a BBB breakdown. The total amount of AQP4 protein decreased (-20%). The disruption of the BBB lasted for 4 days while the impact on AQP4 levels disappeared between day 1 and 4. Our findings shows that blunt focal brain injury results in an early development of brain edema involving both cytotoxic and vasogenic components, a persistent BBB breakdown and a temporary decrease in AQP4, and indicates that both types of edemas and mechanisms should be targeted in TBI treatment.


Aquaporin 4/metabolism , Blood-Brain Barrier/metabolism , Brain Edema/metabolism , Brain Injuries/complications , Animals , Brain Edema/etiology , Brain Edema/pathology , Immunoglobulin G/metabolism , Permeability , Rats , Rats, Sprague-Dawley , Zonula Occludens-1 Protein/metabolism
...