Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Nat Commun ; 14(1): 3258, 2023 06 05.
Article En | MEDLINE | ID: mdl-37277335

The AAA+ ATPase p97/VCP together with different sets of substrate-delivery adapters and accessory cofactor proteins unfolds ubiquitinated substrates to facilitate degradation by the proteasome. The UBXD1 cofactor is connected to p97-associated multisystem proteinopathy but its biochemical function and structural organization on p97 has remained largely elusive. Using a combination of crosslinking mass spectrometry and biochemical assays, we identify an extended UBX (eUBX) module in UBXD1 related to a lariat in another cofactor, ASPL. Of note, the UBXD1-eUBX intramolecularly associates with the PUB domain in UBXD1 close to the substrate exit pore of p97. The UBXD1 PUB domain can also bind the proteasomal shuttling factor HR23b via its UBL domain. We further show that the eUBX domain has ubiquitin binding activity and that UBXD1 associates with an active p97-adapter complex during substrate unfolding. Our findings suggest that the UBXD1-eUBX module receives unfolded ubiquitinated substrates after they exit the p97 channel and before hand-over to the proteasome. The interplay of full-length UBXD1 and HR23b and their function in the context of an active p97:UBXD1 unfolding complex remains to be studied in future work.


Adaptor Proteins, Signal Transducing , Carrier Proteins , Carrier Proteins/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Proteasome Endopeptidase Complex/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism , Adenosine Triphosphatases/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Protein Structure, Tertiary , Protein Binding , Ubiquitin/metabolism , Cell Cycle Proteins/metabolism
2.
Biol Chem ; 401(8): 955-968, 2020 07 28.
Article En | MEDLINE | ID: mdl-32142471

The peptidyl-prolyl cis/trans isomerases (PPIases) Parvulin 14 (Par14) and Parvulin 17 (Par17) result from alternative transcription initiation of the PIN4 gene. Whereas Par14 is present in all metazoan, Par17 is only expressed in Hominidae. Par14 resides mainly within the cellular nucleus, while Par17 is translocated into mitochondria. Using photo-affinity labeling, cross-linking and mass spectrometry (MS) we identified binding partners for both enzymes from HeLa lysates and disentangled their cellular roles. Par14 is involved in biogenesis of ribonucleoprotein (RNP)-complexes, RNA processing and DNA repair. Its elongated isoform Par17 participates in protein transport/translocation and in cytoskeleton organization. Nuclear magnetic resonance (NMR) spectroscopy reveals that Par17 binds to ß-actin with its N-terminal region, while both parvulins initiate actin polymerization depending on their PPIase activity as monitored by fluorescence spectroscopy. The knockdown (KD) of Par17 in HCT116 cells results in a defect in cell motility and migration.


Actins/metabolism , Diazomethane/therapeutic use , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Amino Acid Sequence , Diazomethane/pharmacology , Humans , Polymerization
3.
Biomolecules ; 9(12)2019 12 14.
Article En | MEDLINE | ID: mdl-31847414

AAA+ ATPase p97/valosin-containing protein (VCP)/Cdc48 is a key player in various cellular stress responses in which it unfolds ubiquitinated proteins to facilitate their degradation by the proteasome. P97 works in different cellular processes using alternative sets of cofactors and is implicated in multiple degenerative diseases. Ubiquitin regulatory X domain protein 1 (UBXD1) has been linked to pathogenesis and is unique amongst p97 cofactors because it interacts with both termini of p97. Its N-domain binds to the N-domain and N/D1 interface of p97 and regulates its ATPase activity. The PUB (peptide:N-glycanase and UBA or UBX-containing proteins) domain binds the p97 C-terminus, but how it controls p97 function is still unknown. Here we present the NMR structure of UBXD1-PUB together with binding studies, mutational analysis, and a model of UBXD1-PUB in complex with the p97 C-terminus. While the binding pocket is conserved among PUB domains, UBXD1-PUB features a unique loop and turn regions suggesting a role in coordinating interaction with downstream regulators and substrate processing.


Adaptor Proteins, Vesicular Transport/chemistry , Autophagy-Related Proteins/chemistry , Valosin Containing Protein/chemistry , Adaptor Proteins, Vesicular Transport/isolation & purification , Autophagy-Related Proteins/isolation & purification , Humans , Protein Binding , Protein Structure, Tertiary , Valosin Containing Protein/isolation & purification
...