Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncogenesis ; 10(7): 52, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272356

RESUMEN

Understanding the mechanisms underlying evasive resistance in cancer is an unmet medical need to improve the efficacy of current therapies. In hepatocellular carcinoma (HCC), aberrant expression of hypoxia-inducible factor 1 α (HIF1α) and increased aerobic glycolysis metabolism are drivers of resistance to therapy with the multi-kinase inhibitor Sorafenib. However, it has remained unknown how HIF1α is activated and how its activity and the subsequent induction of aerobic glycolysis promote Sorafenib resistance in HCC. Here, we report the ubiquitin-specific peptidase USP29 as a new regulator of HIF1α and of aerobic glycolysis during the development of Sorafenib resistance in HCC. In particular, we identified USP29 as a critical deubiquitylase (DUB) of HIF1α, which directly deubiquitylates and stabilizes HIF1α and, thus, promotes its transcriptional activity. Among the transcriptional targets of HIF1α is the gene encoding hexokinase 2 (HK2), a key enzyme of the glycolytic pathway. The absence of USP29, and thus of HIF1α transcriptional activity, reduces the levels of aerobic glycolysis and restores sensitivity to Sorafenib in Sorafenib-resistant HCC cells in vitro and in xenograft transplantation mouse models in vivo. Notably, the absence of USP29 and high HK2 expression levels correlate with the response of HCC patients to Sorafenib therapy. Together, the data demonstrate that, as a DUB of HIF1α, USP29 promotes Sorafenib resistance in HCC cells, in parts by upregulating glycolysis, thereby opening new avenues for therapeutically targeting Sorafenib-resistant HCC in patients.

2.
Hepatol Commun ; 3(7): 971-986, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31334445

RESUMEN

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. Treatment options for patients with advanced-stage disease are limited. A major obstacle in drug development is the lack of an in vivo model that accurately reflects the broad spectrum of human HCC. Patient-derived xenograft (PDX) tumor mouse models could overcome the limitations of cancer cell lines. PDX tumors maintain the genetic and histologic heterogeneity of the originating tumors and are used for preclinical drug development in various cancers. Controversy exists about their genetic and molecular stability through serial passaging in mice. We aimed to establish PDX models from human HCC biopsies and to characterize their histologic and molecular stability during serial passaging. A total of 54 human HCC needle biopsies that were derived from patients with various underlying liver diseases and tumor stages were transplanted subcutaneously into immunodeficient, nonobese, diabetic/severe combined immunodeficiency gamma-c mice; 11 successfully engrafted. All successfully transplanted HCCs were Edmondson grade III or IV. HCC PDX tumors retained the histopathologic, transcriptomic, and genomic characteristics of the original HCC biopsies over 6 generations of retransplantation. These characteristics included Edmondson grade, expression of tumor markers, tumor gene signature, tumor-associated mutations, and copy number alterations. Conclusion: PDX mouse models can be established from undifferentiated HCCs, with an overall success rate of approximately 20%. The transplanted tumors represent the entire spectrum of the molecular landscape of HCCs and preserve the characteristics of the originating tumors through serial passaging. HCC PDX models are a promising tool for preclinical personalized drug development.

3.
Cell Rep ; 24(5): 1363-1376, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30067989

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the second most frequent cause of cancer-related mortality worldwide. The multikinase inhibitor sorafenib is the only treatment option for advanced HCC. Due to tumor heterogeneity, its efficacy greatly varies between patients and is limited due to adverse effects and drug resistance. Current in vitro models fail to recapitulate key features of HCCs. We report the generation of long-term organoid cultures from tumor needle biopsies of HCC patients with various etiologies and tumor stages. HCC organoids retain the morphology as well as the expression pattern of HCC tumor markers and preserve the genetic heterogeneity of the originating tumors. In a proof-of-principle study, we show that liver cancer organoids can be used to test sensitivity to sorafenib. In conclusion, organoid models can be derived from needle biopsies of liver cancers and provide a tool for developing tailored therapies.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Organoides/patología , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Técnicas de Cultivo de Tejidos/métodos
4.
J Biol Chem ; 292(43): 17928-17938, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-28900038

RESUMEN

Type I (α and ß) and type III (λ) IFNs are induced upon viral infection through host sensory pathways that activate IFN regulatory factors (IRFs) and nuclear factor κB. Secreted IFNs induce autocrine and paracrine signaling through the JAK-STAT pathway, leading to the transcriptional induction of hundreds of IFN-stimulated genes, among them sensory pathway components such as cGAS, STING, RIG-I, MDA5, and the transcription factor IRF7, which enhance the induction of IFN-αs and IFN-λs. This positive feedback loop enables a very rapid and strong host response that, at some point, has to be controlled by negative regulators to maintain tissue homeostasis. Type I IFN signaling is controlled by the inducible negative regulators suppressor of cytokine signaling 1 (SOCS1), SOCS3, and ubiquitin-specific peptidase 18 (USP18). The physiological role of these proteins in IFN-γ signaling has not been clarified. Here we used knockout cell lines and mice to show that IFN-λ signaling is regulated by SOCS1 but not by SOCS3 or USP18. These differences were the basis for the distinct kinetic properties of type I and III IFNs. We found that IFN-α signaling is transient and becomes refractory after hours, whereas IFN-λ provides a long-lasting IFN-stimulated gene induction.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Interferones/metabolismo , Transducción de Señal/fisiología , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Animales , Línea Celular Tumoral , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Humanos , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferones/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Receptores Inmunológicos , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
5.
Hepatology ; 62(5): 1497-510, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26173433

RESUMEN

UNLABELLED: The Yes-associated protein (YAP)/Hippo pathway has been implicated in tissue development, regeneration, and tumorigenesis. However, its role in cholangiocarcinoma (CC) is not established. We show that YAP activation is a common feature in CC patient biopsies and human CC cell lines. Using microarray expression profiling of CC cells with overexpressed or down-regulated YAP, we show that YAP regulates genes involved in proliferation, apoptosis, and angiogenesis. YAP activity promotes CC growth in vitro and in vivo by functionally interacting with TEAD transcription factors (TEADs). YAP activity together with TEADs prevents apoptosis induced by cytotoxic drugs, whereas YAP knockdown sensitizes CC cells to drug-induced apoptosis. We further show that the proangiogenic microfibrillar-associated protein 5 (MFAP5) is a direct transcriptional target of YAP/TEAD in CC cells and that secreted MFAP5 promotes tube formation of human microvascular endothelial cells. High YAP activity in human CC xenografts and clinical samples correlates with increased MFAP5 expression and CD31(+) vasculature. CONCLUSIONS: These findings establish YAP as a key regulator of proliferation and antiapoptotic mechanisms in CC and provide first evidence that YAP promotes angiogenesis by regulating the expression of secreted proangiogenic proteins.


Asunto(s)
Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos , Colangiocarcinoma/patología , Proteínas de Unión al ADN/fisiología , Resistencia a Antineoplásicos , Neovascularización Patológica/etiología , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología , Animales , Apoptosis , Neoplasias de los Conductos Biliares/irrigación sanguínea , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Proteínas de Ciclo Celular , Proliferación Celular , Colangiocarcinoma/irrigación sanguínea , Colangiocarcinoma/tratamiento farmacológico , Proteínas Contráctiles/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular , Ratones , Oncogenes , Factores de Transcripción de Dominio TEA
6.
Cell Microbiol ; 16(2): 232-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24119059

RESUMEN

Pathogenic mycobacteria survive in phagocytic host cells primarily as a result of their ability to prevent fusion of their vacuole with lysosomes, thereby avoiding a bactericidal environment. The molecular mechanisms to establish and maintain this replication compartment are not well understood. By combining molecular and microscopical approaches we show here that after phagocytosis the actin nucleation-promoting factor WASH associates and generates F-actin on the mycobacterial vacuole. Disruption of WASH or depolymerization of F-actin leads to the accumulation of the proton-pumping V-ATPase around the mycobacterial vacuole, its acidification and reduces the viability of intracellular mycobacteria. This effect is observed for M. marinum in the model phagocyte Dictyostelium but also for M. marinum and M. tuberculosis in mammalian phagocytes. This demonstrates an evolutionarily conserved mechanism by which pathogenic mycobacteria subvert the actin-polymerization activity of WASH to prevent phagosome acidification and maturation, as a prerequisite to generate and maintain a replicative niche.


Asunto(s)
Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Mycobacterium/inmunología , Fagocitos/inmunología , Fagocitos/microbiología , Multimerización de Proteína , Animales , Línea Celular , Dictyostelium/microbiología , Ratones , Fagocitosis , Fagosomas/inmunología , Fagosomas/microbiología
7.
J Hepatol ; 58(4): 743-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23207140

RESUMEN

BACKGROUND & AIMS: The toll-like receptor 9 (TLR9) agonist IMO-2125 is currently evaluated in clinical trials for chronic hepatitis C therapy. The aim of this study was to investigate the in vivo mode of action of a closely related compound, referred to as immunomodulatory oligonucleotide (IMO). METHODS: We analyzed the Jak-STAT pathway activation and induction of interferon-stimulated genes in the liver of wild type, interferon-α/ß receptor-deficient and interferon-γ-deficient mice, after administration of IMO. RESULTS: IMO induced a prolonged activation of the Jak-STAT pathway and upregulation of interferon-stimulated genes in the mouse liver. Contrary to the response observed after interferon-α injection, the signalling induced by IMO was not abrogated following repeated administration. At early time points after IMO injection, STAT1 phosphorylation and interferon-stimulated gene induction required a functional interferon-α/ß receptor, whereas at the later time points, the activation was type I interferon-independent. Microarray analysis revealed that IMO induced a broad transcriptional response in the mouse liver. This included upregulation of cytokine and chemokine genes responsible for recruitment of IFN-γ producers, such as T cells and natural killer cells. Interferon-γ-deficient mice showed a transient response to IMO, demonstrating the central role of interferon-γ in sustained activation of Jak-STAT pathway by IMO. CONCLUSIONS: The bimodal kinetics of response to IMO in the mouse liver are driven by the sequential endogenous production of type I and II interferons. The lack of refractoriness to IMO, combined with the long-lasting induction of interferon-stimulated genes, reveals a favourable pharmacodynamics profile of this novel TLR9 agonist for the treatment of chronic viral hepatitis.


Asunto(s)
Interferón Tipo I/biosíntesis , Interferón gamma/biosíntesis , Hígado/efectos de los fármacos , Hígado/inmunología , Receptor Toll-Like 9/agonistas , Animales , Quimiocinas/genética , Citocinas/genética , Factores Inmunológicos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligodesoxirribonucleótidos/farmacología , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/genética , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...