Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 152: 106450, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325167

RESUMEN

The aim of this study was to evaluate a novel approach for measuring the polymerization shrinkage of dental resin composites - measurement of sample depth variation. This new method was compared with two testing methodologies used for assessing the polymerization shrinkage (buoyancy and strain gauge methods). Eleven commercial resin composites were investigated (EverX Posterior; EverX Flow Bulk & Dentin; G-aenial Anterior, Posterior, A'chord & Universal Injectable; Filtek One Bulk Fill & Universal Restorative; SDR + Flow and Aura Bulk Fill). In addition, filler content (wt. %), flexural modulus, and the degree of conversion were evaluated. Shrinkage values, obtained by the buoyancy method, are greater than shrinkage evaluated by the strain gauge. There are significant differences in polymerization shrinkage among the tested resin composite materials. There is a strong correlation between the newly proposed method of shrinkage measurement and the buoyancy method (r2 = 0.8; p < 0.01). There is no correlation between volumetric shrinkage measurement (depth changes and buoyancy method) and linear strain measurement. Volumetric filler amount correlates with shrinkage values evaluated by all three methods. The degree of conversion for the tested resin composites ranges from 36 % to 52 %. There are some differences (around 10 %) between the filler content (wt. %) measured by the ashing-in-air method and the data given by the manufacturers. The highest flexural modulus is 14.8 GPa and the lowest 6.6 GPa. New formulations may introduce unknown relationships between the fundamental properties of dental resin composites.


Asunto(s)
Gastrópodos , Animales , Polimerizacion
2.
Dent Mater J ; 43(2): 155-163, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38296513

RESUMEN

The aim of this study was to compare two testing methodologies employed for assessing the polymerization shrinkage stress of dental resin composites. Ten commercial resin composites were investigated (EverX Posterior & Flow; G-ænial Anterior, Posterior, A'CHORD & Universal Injectable; Filtek One Bulk Fill & Universal Restorative; SDR flow+ and Aura Bulk Fill). Photoelastic and contraction forces measurement methods were performed. The slope of the linear trendline and C-factor of specimens were calculated. The shrinkage stress values (range between: 6.4-13.4 MPa) obtained by the photoelastic method were higher for all resin composites than the values obtained by contraction forces measurements (range between 1.2-4.8 MPa). However, there was a strong linear correlation between these methods (r=0.8). The use of both investigated methods revealed important information about the shrinkage behavior of the restorative resin composites.


Asunto(s)
Resinas Compuestas , Materiales Dentales , Polimerizacion , Análisis del Estrés Dental , Ensayo de Materiales
3.
J Funct Biomater ; 14(10)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37888152

RESUMEN

Direct restorations are currently the most popular restorations used in dental prosthodontics. Due to the increased requirements for materials used in the fabrication of fixed restorations, there is a need for evaluation of strength parameters of these materials, including dental cements. The present study investigated the change in selected strength parameters of four dual-cured composite cements as a function of storage temperature. The following were investigated: three-point flexural strength (FS), flexural modulus in bending (FM), diametral tensile strength (DTS) and Vickers hardness (HV). Four dual-cured composite cements were tested, i.e., Multilink Automix (Ivoclar Vivadent), seT PP (SDI), MaxCem (Kerr), and Bifix Hybrid Abutment (VOCO). Each of the tested cements was stored for 7 days at one of the selected temperatures: 8 °C, 15 °C, 25 °C, or 35 °C, before the samples were made. Strength properties (DTS, FS) are not strongly dependent on the storage temperature in the range of 8-35 °C. Some statistical differences were observed between the hardness of MaxCem and Multilink Automix storage in various temperatures. FS and FM were lowest for Bifix Hybrid Abutment, MaxCem and Multilink Automix storage at 25 °C, and highest for Bifix Hybrid Abutment, MaxCem, and seT PP stored in 35 °C. The cement with the highest filler content (70% by weight) showed the highest FS and HV.

4.
Materials (Basel) ; 16(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37570137

RESUMEN

Due to its unique properties, zirconia is increasingly being used in dentistry, but surface preparation for bonding is difficult because of its polycrystalline structure. This study aimed to determine the effect of a new etching technique (Zircos-E) on Ceramill Zi (Amann Girrbach). The effect of etching and the use of primers (Monobond Plus and MKZ Primer) on the bond strength of zirconia with resin cement (NX3) was assessed. Shear bond strength was evaluated after storage in water for 24 h and after thermal aging (5000 thermocycling at 5 °C/55 °C). A scanning electron microscope (Hitachi S-4700) was used to evaluate the surface structure before and after the Zircos-E system. The roughness parameters were assessed using an SJ-410 profilometer. The etched zirconia surface is more homogeneous over the entire surface, but some localized forms of erosion exist. The etching of zirconia ceramics caused changes in the surface structure of zirconia and a significant increase in the shear bond strength between zirconia and resin cement. The use of primers positively affects the adhesion between resin cement and zirconia. Aging with thermocycler significantly reduced the shear bond strength, with one exception-sandblasted samples with MKZ Primer. Standard ceramic surface preparation, involving only alumina sandblasting, does not provide a satisfactory bond. The use of etching with the Zircos-E system and primers had a positive effect on the strength of the zirconium-resin cement connection.

5.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982646

RESUMEN

The goal of this study was to compare the mechanical properties of experimental resin dental composites containing a conventional photoinitiating system (camphorquinone CQ and 2-(dimethylami-no)ethyl methacrylate (DMAEMA)) to a photoinitiator system containing 1-phenyl-1,2 propanedione (PPD) with 2-(dimethylami-no)ethyl methacrylate) or acting alone phenylbis(2,4,6-trimethylbenzoyl)-phosphine oxide (BAPO). The manually produced composites consisted of an organic matrix: bis-GMA (60 wt. %), TEGDMA (40 wt. %), and silanized silica filler (45 wt. %). The composites contained 0.4/0.8 wt. %, 0.8/1.6 wt. %, and 1/2 wt. % of PPD/DMAEMA and another group included 0.25, 0.5, or 1 wt. % of BAPO. Vickers hardness, microhardness (in the nanoindentation test), diametral tensile strength, and flexural strength were assessed, and CIE L* a* b* colorimetric analysis was conducted for each composite produced. The highest average Vickers hardness values were obtained for the composite containing 1 wt. % BAPO (43.73 ± 3.52 HV). There was no statistical difference in the results of diametral tensile strength for the experimental composites tested. The results of 3-point bending tests were the highest for composites containing CQ (77.3 ± 8.84 MPa). Despite the higher hardness of experimental composites including PPD or BAPO, compared with composites with CQ, the overall results indicate that the composite with CQ still represents a better solution when used as a photoinitiator system. Moreover, the composites containing PPD and DMAEMA are not promising in terms of color or mechanical properties, especially as they require significantly longer irradiation times.


Asunto(s)
Resinas Compuestas , Óxidos , Metacrilatos , Bisfenol A Glicidil Metacrilato , Polietilenglicoles , Ensayo de Materiales
6.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901766

RESUMEN

Due to the questionable durability of dental restorations, there is a need to increase the lifetime of composite restoration. The present study used diethylene glycol monomethacrylate/4,4'-methylenebis(cyclohexyl isocyanate) (DEGMMA/CHMDI), diethylene glycol monomethacrylate/isophorone diisocyanate (DEGMMA/IPDI) monomers, and bis(2,6-diisopropylphenyl)carbodiimide (CHINOX SA-1) as modifiers of a polymer matrix (40 wt% urethane dimethacrylate (UDMA), 40 wt% bisphenol A ethoxylateddimethacrylate (bis-EMA), and 20 wt% triethyleneglycol dimethacrylate (TEGDMA)). Flexural strength (FS), diametral tensile strength (DTS), hardness (HV), sorption, and solubility were determined. To assess hydrolytic stability, the materials were tested before and after two aging methods (I-7500 cycles, 5 °C and 55 °C, water and 7 days, 60 °C, 0.1 M NaOH; II-5 days, 55 °C, water and 7 days, 60 °C, 0.1 M NaOH). The aging protocol resulted in no noticeable change (median values were the same as or higher than the control value) or a decrease in the DTS value from 4 to 28%, and a decrease in the FS value by 2 to 14%. The hardness values after aging were more than 60% lower than those of the controls. The used additives did not improve the initial (control) properties of the composite material. The addition of CHINOX SA-1 improved the hydrolytic stability of composites based on UDMA/bis-EMA/TEGDMA monomers, which could potentially extend the service life of the modified material. Extended studies are needed to confirm the possible use of CHINOX SA-1 as an antihydrolysis agent in dental composites.


Asunto(s)
Metacrilatos , Ácidos Polimetacrílicos , Bisfenol A Glicidil Metacrilato , Hidróxido de Sodio , Ensayo de Materiales , Resinas Compuestas , Polietilenglicoles , Poliuretanos , Agua
7.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203323

RESUMEN

The dental material industry is rapidly developing resin-based composites (RBCs), which find widespread use in a variety of clinical settings. As such, their biocompatibility has gained increasing interest. This literature review presents a summary of research into the cytotoxicity of methacrylate-based composites published from 2017 to 2023. Subject to analysis were 14 in vitro studies on human and murine cell lines. Cytotoxicity in the included studies was measured via MTT assay, LDH assay, and WST-1 assay. The QUIN Risk of Bias Tool was performed to validate the included studies. Included studies (based entirely on the results of in vitro studies) provide evidence of dose- and time-dependent cytotoxicity of dental resin-based composites. Oxidative stress and the depletion of cellular glutathione (GSH) were suggested as reasons for cytotoxicity. Induction of apoptosis by RBCs was indicated. While composites remain the golden standard of dental restorative materials, their potential cytotoxicity cannot be ignored due to direct long-term exposure. Further in vitro investigations and clinical trials are required to understand the molecular mechanism of cytotoxicity and produce novel materials with improved safety profiles.


Asunto(s)
Apoptosis , Bioensayo , Humanos , Animales , Ratones , Línea Celular , Materiales Dentales/toxicidad , Glutatión
8.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232894

RESUMEN

The aim of this research was to compare the biomechanical properties of experimental composites containing a classic photoinitiating system (camphorquinone and 2-(dimethylami-no)ethyl methacrylate) or diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) as a photoinitiator. The produced light-cured composites consisted of an organic matrix-Bis-GMA (60 wt.%), TEGDMA (40 wt.%) and silanized silica filler (45 wt.%). Composites contained 0.27; 0.5; 0.75 or 1 wt.% TPO. Vickers hardness, microhardness (in the nanoindentation test), diametral tensile strength, resistance to three-point bending and the CIE L* a* b* colorimetric analysis was performed with each composite produced. The highest average Vickers hardness values were obtained for the composite containing 1 wt.% TPO (43.18 ± 1.7HV). The diametral tensile strength remains on regardless of the type and amount of photoinitiator statistically the same level, except for the composite containing 0.5 wt.% TPO for which DTS = 22.70 ± 4.7 MPa and is the lowest recorded value. The highest average diametral tensile strength was obtained for the composite containing 0.75 wt.% TPO (29.73 ± 4.8 MPa). The highest modulus of elasticity characterized the composite containing 0.75 wt.% TPO (5383.33 ± 1067.1 MPa). Composite containing 0.75 wt.% TPO has optimal results in terms of Vickers hardness, diametral tensile strength, flexural strength and modulus of elasticity. Moreover, these results are better than the parameters characterizing the composite containing the CQ/DMAEMA system. In terms of an aesthetic composite containing 0.75 wt.%. TPO is less yellow in color than the composite containing CQ/DMAEMA. This conclusion was objectively confirmed by test CIE L* a* b*.


Asunto(s)
Resinas Compuestas , Óxidos , Aminas , Compuestos de Bifenilo , Bisfenol A Glicidil Metacrilato , Alcanfor/análogos & derivados , Ensayo de Materiales , Metacrilatos , Fosfinas , Polietilenglicoles , Dióxido de Silicio
9.
Materials (Basel) ; 15(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35888521

RESUMEN

Materials with potential use as dental restoration should be evaluated in an aggressive environment. Such accelerated aging is widely used in other industries and allows the assessment of service life. In the presented study, three neat resins (UDMA/Bis-GMA/TEGDMA 70/10/20 wt.%, UDMA/Bis-GMA/TEGDMA 40/40/20 wt.% and UDMA/Bis-EMA/TEGDMA 40/40/20 wt.%) and three composites based on these matrices were tested before and after aging protocols (I-7500 cycles, 5 °C and 55 °C, water and 7 days, 60 °C, 0.1 M NaOH; II-5 days, 55 °C, water and 7 days, 60 °C, 0.1 M NaOH). Flexural strength (FS), diametral tensile strength (DTS) and hardness (HV) were determined. Applied aging protocols resulted in a decrease in the value of the FS, DTS and HV. Larger changes were noticed for the neat resins. Materials in which the content of bis-GMA was lower or substituted by bis-EMA showed better resistance to degradation. The choice of mixtures with monomers characterized by lower sorption values may favorably affect hydrolytic stability. It was shown that for composites there was a drastic decrease in hardness, which suggests a more superficial effect of the used protocols. However, degradation of the surface layer can result in a growing problem over time given that the mastication processes are an inherent element in the oral environment.

10.
Molecules ; 27(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684448

RESUMEN

The clinical performance of a dental restoration is strongly influenced by the complex and dynamically-changing oral environment; however, no standard procedure exists to evaluate this lifetime. This research provides an in-depth analysis of the effect of different aging procedures on the flexural strength (FS), diametral tensile strength (DTS) and hardness (HV) of selected dental materials (Resin F, Flow-Art and Arkon). Material structure was evaluated by scanning electron microscopy. It was found that each aging protocol had some influence on the tested properties, with continual erosion and degradation being observed. Greater mechanical degradation was observed for Resin F (neat resin) after the applied aging protocols, suggesting that a resin matrix is more susceptible for degradation. The most aggressive aging protocol was Protocol 5: 0.1 M NaOH, seven days, 60 °C. Further studies on the effect of artificial aging on dental materials should include a study of the thermal and chemical factors. A standardized aging procedure is crucial for improving the resistance of dental resin composite to oral conditions and their clinical performance.


Asunto(s)
Resinas Compuestas , Resinas Compuestas/química , Dureza , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Estrés Mecánico , Propiedades de Superficie , Resistencia a la Tracción
11.
J Prosthet Dent ; 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35636985

RESUMEN

STATEMENT OF PROBLEM: Whether ultrathin ceramic veneers are a suitable treatment alternative to conventional ceramic veneers is unclear. PURPOSE: The purpose of this prospective clinical cohort study was to evaluate the efficacy and longevity of nonpreparation and minimally invasive ceramic veneers and the influence of existing restorations and ceramic type and to define the relationship between the number of veneers placed on different teeth and in different locations, as well as age and sex correlations. MATERIAL AND METHODS: A total of 801 veneers were placed on incisors, canines, and premolars on maxillary and mandibular teeth between January 2011 and August 2019 (ABR number: RNN/92/19/KE). Feldspathic or feldspathic and lithium disilicate veneers were made, etched, silanated, and cemented. The restorations were evaluated 2 weeks after placement and then every 6 months by using the modified United States Public Health Service (USPHS) criteria. The relationship between participant age and number of veneers was analyzed by using the Spearman rank coefficient test and the Mann-Whitney U test. Changes in the number of participants and veneers in subsequent years were analyzed based on the Spearman rank correlation coefficient. The trend between the location of veneers and the sex of the participants was analyzed by using the chi-square test for trend. Longevity tables and a survival curve for the veneers were prepared based on the Kaplan-Meier method. The relationships between veneer longevity and the type of ceramic used and the presence of restorations were compared by using the Taron-Ware test (α=.05). RESULTS: The mean longevity of the intact veneers was 8.45 years. Clinical success was 99.7% after 1 year and 97.9% after 4 years; this value remained constant until the end of the study. Most participants were women (n=122; 84.1%), and the mean age was 41 years; median 40 years. The number of veneers placed on mandibular teeth each year increased over the subsequent years. CONCLUSIONS: The longevity of ultrathin veneers after 9 years of observation was not related to the ceramic used or to the presence of a composite resin restoration. Veneers were more commonly placed in middle-aged women and in mandibular anterior teeth.

12.
Materials (Basel) ; 15(7)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35407980

RESUMEN

Bisphenol A-glycidyl methacrylate (bis-GMA) and urethane dimethacrylate (UDMA) are usually combined with low-viscosity monomers to obtain more desirable viscosity, handling characteristics and general properties. The present study determined the flexural strength (FS), flexural modulus (FM), diametral tensile strength (DTS), and hardness (HV) of five matrices and composites based on these resins. The polymerization shrinkage stress (PSS) was also studied for the composites. The polymer matrices were formed using bis-GMA and UDMA. TEGDMA, HEMA and HDDMA acted as co-monomers. The composites had 45 wt.% of filler content. The highest FS and FM were obtained from the UDMA/bis-GMA/TEGDMA/HEMA matrix and the composite (matrix + filler). The best DTS values were obtained from the UDMA/bis-GMA/HEMA matrix and the composite. One of the lowest values of FS, FM, and DTS was obtained from the UDMA/bis-GMA/HDDMA matrix and the composite. All the composites demonstrated similar hardness values. The lowest polymerization shrinkage stress was observed for the UDMA/bis-GMA/TEGDMA/HEMA composite, and the highest PSS was observed for the UDMA/bis-GMA/TEGDMA/HDDMA composite. The addition of HEMA had a positive effect on the properties of the tested materials, which may be related to the improved mobility of the bis-GMA and UDMA monomers.

13.
Polymers (Basel) ; 13(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34833271

RESUMEN

The aim of this article was to compare the biomechanical properties of commercial composites containing different photoinitiators: Filtek Ultimate (3M ESPE) containing camphorquinone (CQ); Estelite Σ Quick (Tokuyama Dental) with CQ in RAP Technology®; Tetric EvoCeram Bleach BLXL (Ivoclar Vivadent AG) with CQ and Lucirin TPO; and Tetric Evoceram Powerfill IVB (Ivoclar Vivadent AG) with CQ and Ivocerin TPO. All samples were cured with a polywave Valo Lamp (Ultradent Products Inc.) with 1450 mW/cm2. The microhardness, hardness by Vicker's method, diametral tensile strength, flexural strength and contraction stress with photoelastic analysis were tested. The highest hardness and microhardness were observed for Filtek Ultimate (93.82 ± 17.44 HV), but other composites also displayed sufficient values (from 52 ± 3.92 to 58,82 ± 7.33 HV). Filtek Ultimate not only demonstrated the highest DTS (48.03 ± 5.97 MPa) and FS (87.32 ± 19.03 MPa) but also the highest contraction stress (13.7 ± 0.4 MPa) during polymerization. The TetricEvoCeram Powerfill has optimal microhardness (54.27 ± 4.1 HV), DTS (32.5 ± 5.29 MPa) and FS (79.3 ± 14.37 MPa) and the lowest contraction stress (7.4 ± 1 MPa) during photopolymerization. To summarize, Filtek Ultimate demonstrated the highest microhardness, FS and DTS values; however, composites with additional photoinitiators such as Lucirin TPO and Ivocerin have the lowest polymerization shrinkage. These composites also have higher FS and DTS and microhardness than material containing CQ in Rap Technology.

14.
Materials (Basel) ; 14(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064213

RESUMEN

Most of the dental materials available on the market are still based on traditional monomers such as bisphenol A-glycidyl methacrylate (Bis-GMA), urethane dimethacrylate (UDMA), triethyleneglycol dimethacrylate (TEGDMA), and ethoxylated bisphenol-A dimethacrylate (Bis-EMA). The interactions that arise in the monomer mixture and the characteristics of the resulting polymer network are the most important factors, which define the final properties of dental materials. The use of three different monomers in proper proportions may create a strong polymer matrix. In this paper, fourteen resin materials, based on urethane dimethacrylate with different co-monomers such as Bis-GMA or Bis-EMA, were evaluated. TEGDMA was used as the diluting monomer. The flexural strength (FS), diametral tensile strength (DTS), and hardness (HV) were determined. The impacts of material composition on the water absorption and dissolution were evaluated as well. The highest FS was 89.5 MPa, while the lowest was 69.7 MPa. The median DTS for the tested materials was found to range from 20 to 30 MPa. The hardness of the tested materials ranged from 14 to 16 HV. UDMA/TEGDMA matrices were characterized by the highest adsorption values. The overall results indicated that changes in the materials' properties are not strictly proportional to the material's compositional changes. The matrices showed good properties when the composite contained an equal mixture of Bis-GMA/Bis-EMA and UDMA or the content of the UDMA monomer was higher.

15.
Polymers (Basel) ; 13(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540697

RESUMEN

The presented paper concerns current knowledge of commercial and alternative photoinitiator systems used in dentistry. It discusses alternative and commercial photoinitiators and focuses on mechanisms of polymerization process, in vitro measurement methods and factors influencing the degree of conversion and hardness of dental resins. PubMed, Academia.edu, Google Scholar, Elsevier, ResearchGate and Mendeley, analysis from 1985 to 2020 were searched electronically with appropriate keywords. Over 60 articles were chosen based on relevance to this review. Dental light-cured composites are the most common filling used in dentistry, but every photoinitiator system requires proper light-curing system with suitable spectrum of light. Alternation of photoinitiator might cause changing the values of biomechanical properties such as: degree of conversion, hardness, biocompatibility. This review contains comparison of biomechanical properties of dental composites including different photosensitizers among other: camphorquinone, phenanthrenequinone, benzophenone and 1-phenyl-1,2 propanedione, trimethylbenzoyl-diphenylphosphine oxide, benzoyl peroxide. The major aim of this article was to point out alternative photoinitiators which would compensate the disadvantages of camphorquinone such as: yellow staining or poor biocompatibility and also would have mechanical properties as satisfactory as camphorquinone. Research showed there is not an adequate photoinitiator which can be as sufficient as camphorquinone (CQ), but alternative photosensitizers like: benzoyl germanium or novel acylphosphine oxide photoinitiators used synergistically with CQ are able to improve aesthetic properties and degree of conversion of dental resin.

16.
Materials (Basel) ; 14(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525369

RESUMEN

The successful restoration of teeth requires a good connection between the inlay and natural tissue. A strong bond may improve retention and reinforce tooth structure. The purpose of this study was to evaluate the influence of cement layer thickness on contraction stress generated during photopolymerization, and to determine the changes in stress state of the cement occurring during aging in water (over 84 days). Two cements were used: resin composite cement (NX3) and self-adhesive resin cement (Maxcem Elite Chroma). A cylindrical sample made of CuZn alloy was used to imitate the inlay. The stress state was measured by photoelastic analysis. The contraction stress of the inlay restoration was calculated for cement layer thicknesses of 25 µm, 100 µm, 200 µm, and 400 µm. For both tested materials, the lowest contraction stress was observed for the thinnest layer (25 µm), and this increased with thickness. Following water immersion, a significant reduction in contraction stress was observed due to hygroscopic expansion. Applying a thin layer (approximately 25 µm) of composite and self-adhesive resin cements resulted in high levels of expansion stresses (over -6 MPa) after water aging.

17.
Materials (Basel) ; 13(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785055

RESUMEN

Complex dental components which are individually tailored to the patient can be obtained due to new additive manufacturing technology. This paper reviews the metallic powders used in dental applications, the fabrication process (build orientation, process parameters) and post-processing processes (stress relieving, surface finishing). A review of the literature was performed using PubMed, ScienceDirect, Mendeley and Google Scholar. Over eighty articles were selected based on relevance to this review. This paper attempts to include the latest research from 2010 until 2020, however, older manuscripts (10 articles) were also selected. Over 1200 records were identified through the search; these were screened for title and/or summary. Over eighty articles were selected based on relevance to this review. In order to obtain a product which can be used in clinical applications, the appropriate manufacturing parameters should be selected. A discussion was made on optimal selective laser melting (SLM) parameters in dentistry. In addition, this paper includes a critical review of applied thermal treatment methods for Co-Cr alloys used in dentistry.

18.
Polymers (Basel) ; 12(4)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290337

RESUMEN

The paper reviews the environmental factors affecting ageing processes, and the degradation of resins, filler, and the filler-matrix interface. It discusses the current methods of testing materials in vitro. A review of literature was conducted with the main sources being PubMed. ScienceDirect, Mendeley, and Google Scholar were used as other resources. Studies were selected based on relevance, with a preference given to recent research. The ageing process is an inherent element of the use of resin composites in the oral environment, which is very complex and changes dynamically. The hydrolysis of dental resins is accelerated by some substances (enzymes, acids). Bonds formed between coupling agent and inorganic filler are prone to hydrolysis. Methods for prediction of long-term behaviour are not included in composite standards. Given the very complex chemical composition of the oral environment, ageing tests based on water can only provide a limited view of the clinical performance of biomaterial. Systems that can reproduce dynamic changes in stress (thermal cycling, fatigue tests) are better able to mimic clinical conditions and could be extremely valuable in predicting dental composite clinical performance. It is essential to identify procedure to determine the ageing process of dental materials.

19.
Materials (Basel) ; 12(15)2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382428

RESUMEN

Prosthetic materials must exhibit adequate resistance to the oral environment. The aim of this paper was to study the resistance of selected cements used for cementing restorations (Breeze-composite, Adhesor Carbofine-zinc-polycarboxylate and IHDENT-Giz type II-glass-ionomer) against ethanol, soda and green tea solutions. The highest values of hardness and DTS (diametral tensile strength) were obtained by composite cement (HV = 15-31, DTS = 34-45 MPa). Ethanol solution had the greatest impact on the hardness value of composite cement, and soda solution on zinc-polycarboxylate cement. No significant differences were noted in the DTS values of composite cements after immersion in solvents; however, the DTS value of zinc-polycarboxylate cement increased after prolonged immersion time in ethanol and the DTS of glass-ionomer cement (IHDENT Giz type II) clearly decreased after submersion in soda solutions. Variation in pH across the range of 6 (tea) to 9 (soda solution) had a low impact on the properties of dental cements. Extended exposure to solvents appears to worsen the properties of cements.

20.
Materials (Basel) ; 11(6)2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29890684

RESUMEN

Resin matrix dental materials undergo contraction and expansion changes due to polymerization and water absorption. Both phenomena deform resin-dentin bonding and influence the stress state in restored tooth structure in two opposite directions. The study tested three composite resin cements (Cement-It, NX3, Variolink Esthetic DC), three adhesive resin cements (Estecem, Multilink Automix, Panavia 2.0), and seven self-adhesive resin cements (Breeze, Calibra Universal, MaxCem Elite Chroma, Panavia SA Cement Plus, RelyX U200, SmartCem 2, and SpeedCEM Plus). The stress generated at the restoration-tooth interface during water immersion was evaluated. The shrinkage stress was measured immediately after curing and after 0.5 h, 24 h, 72 h, 96 h, 168 h, 240 h, 336 h, 504 h, 672 h, and 1344 h by means of photoelastic study. Water sorption and solubility were also studied. All tested materials during polymerization generated shrinkage stress ranging from 4.8 MPa up to 15.1 MPa. The decrease in shrinkage strain (not less than 57%) was observed after water storage (56 days). Self-adhesive cements, i.e., MaxCem Elite Chroma, SpeedCem Plus, Panavia SA Plus, and Breeze exhibited high values of water expansion stress (from 0 up to almost 7 MPa). Among other tested materials only composite resin cement Cement It and adhesive resin cement Panavia 2.0 showed water expansion stress (1.6 and 4.8, respectively). The changes in stress value (decrease in contraction stress or built up of hydroscopic expansion) in time were material-dependent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA