Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 667: 821-832, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30852436

RESUMEN

This study is focused on the selection of the best piping arrangement for a pilot scale annular channel reactor intended for the remediation of waters and wastewaters. Two annular channel reactors composed of a single UV lamp and distinct piping arrangements were considered: (i) a novel reactor with tangential inlet/outlet pipes - the FluHelik reactor, and (ii) a conventional Jets reactor. These two reactors were manufactured at lab scale and characterized in terms of residence time distribution (RTD), radiant power and ability to degrade aqueous solutions spiked with a model compound - 3-amino-5-methylisoxazole (AMI) - by H2O2/UVC and UVC processes. Computational fluid dynamics (CFD) simulations were used to assess the hydrodynamics, RTD and UV radiation intensity distribution of both reactors at pilot scale. In general, experimental results at lab scale revealed quite similar RTDs, radiant powers and AMI degradation rates for both reactors. On the other hand, CFD simulations at pilot scale revealed the generation of a helical motion of fluid around the UVC lamp in the FluHelik reactor, inducing: (i) a longer contact time between fluid particles and UV light, (ii) more intense dynamics of macromixing as a result of larger velocity gradients, turbulent intensities and dispersion of RTD values around the peak, and (iii) a more homogeneous UV radiation distribution. In addition, the design of the FluHelik reactor can favor the implementation of various reactors in series, promoting its application at industrial scale. The FluHelik reactor was chosen for scaling-up. A pre-pilot scale treatment unit containing this reactor was constructed and its feasibility was proven.

2.
Environ Sci Technol ; 50(14): 7679-86, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27328254

RESUMEN

Electrocoagulation (EC) has long been considered a phase separation process, well suited for industrial wastewater treatment since it causes a quick, drastic decay of organic matter content. This research demonstrates that EC also behaves, at least for some molecules like the industrial preservative bronopol, as an effective transformation technology able to yield several breakdown products. This finding has relevant environmental implications, pointing to EC as a greener process than described in literature. A thorough optimization of EC was performed with solutions of bronopol in a simulated water matrix, yielding the complete disappearance of the parent molecule within 20 min at 200 mA (∼20 mA/cm(2)), using Fe as the anode and cathode. A 25% of total organic carbon (TOC) abatement was attained as maximum, with bronopol being converted into bromonitromethane, bromochloromethane, formaldehyde and formic acid. N atoms were accumulated as NO3(-), whereas Br(-) was stable once released. This suggests that mediated oxidation by active chlorine, as well as by hydroxyl radicals resulting from its reaction with iron ions, is the main transformation mechanism. Aiming to enhance the mineralization, a sequential combination of EC with electro-Fenton (EF) as post-treatment process was proposed. EF with boron-doped diamond (BDD) anode ensured the gradual TOC removal under the action of (•)OH and BDD((•)OH), also transforming Br(-) into BrO3(-).


Asunto(s)
Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Boro , Diamante , Electrocoagulación , Electrodos , Oxidación-Reducción
3.
Environ Sci Pollut Res Int ; 23(19): 19134-44, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27349786

RESUMEN

The removal of radiocontrast agent diatrizoic acid (DIA) from water was performed using photo-Fenton (PF) process. First, the effect of H2O2 dosage on mineralization efficiency was determined using ultraviolet (UV) irradiation. The system reached a maximum mineralization degree of 60 % total organic carbon (TOC) removal at 4 h with 20 mM initial H2O2 concentration while further concentration values led to a decrease in TOC abatement efficiency. Then, the effect of different concentrations of Fenton's reagents was studied for homogeneous Fenton process. Obtained results revealed that 0.25 mM Fe(3+) and 20 mM H2O2 were the best conditions, achieving 80 % TOC removal efficiency at 4 h treatment. Furthermore, heterogeneous PF treatment was developed using iron-activated carbon as catalyst. It was demonstrated that this catalyst is a promising option, reaching 67 % of TOC removal within 4 h treatment without formation of iron leachate in the medium. In addition, two strategies of enhancement for process efficiency are proposed: coupling of PF with electro-Fenton (EF) process in two ways: photoelectro-Fenton (PEF) or PF followed by EF (PF-EF) treatments, achieving in both cases the complete mineralization of DIA solution within only 2 h. Finally, the Microtox tests revealed the formation of more toxic compounds than the initial DIA during PF process, while, it was possible to reach total mineralization by both proposed alternatives (PEF or PF-EF) and thus to remove the toxicity of DIA solution.


Asunto(s)
Medios de Contraste/química , Peróxido de Hidrógeno/química , Hierro/química , Procesos Fotoquímicos , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Catálisis , Medios de Contraste/análisis , Diatrizoato , Oxidación-Reducción , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
4.
Chemosphere ; 156: 347-356, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27183337

RESUMEN

The feasibility of the electrokinetic-Fenton technology coupled with surfactants in the treatment of real historically hydrocarbons polluted soils has been studied. The characterisation of these soils from Spain and Romania was performed and identified as diesel and diesel-motor oil spillages, respectively. Moreover, the ageing of the spillages produced by the soil contamination was estimated showing the historical pollution of the sites (around 11 and 20 years for Romanian and Spanish soils, respectively). An ex-situ electrochemical treatment was performed to evaluate the adequacy of surfactants for the degradation of the hydrocarbons present in the soils. It was found an enhancement in the solubilisation and removal of TPHs with percentages increasing from 25.7 to 81.8% by the presence of Tween 80 for Spanish soil and from 15.1% to 71.6% for Triton X100 in Romanian soil. Therefore, the viability of coupling enhanced electrokinetic and Fenton remediation was evaluated through a simulated in-situ treatment at laboratory scale. The results demonstrated that the addition of the selected surfactants improved the solubilisation of the hydrocarbons and influenced the electroosmotic flow with a slight decrease. The efficiency of the treatment increased for both considered soil samples and a significant degradation level of the hydrocarbons compounds was observed. Buffering of pH coupled with the addition of a complexing agent showed to be important in the treatment process, facilitating the conditions for the degradation reactions that take place into the soil matrix. The results demonstrated the effectiveness of the selected techniques for remediation of the investigated soils.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Hidrocarburos/química , Contaminantes del Suelo/química , Técnicas Electroquímicas , Cinética , Octoxinol/química , Polisorbatos/química , Rumanía , España , Tensoactivos/química
5.
Chemosphere ; 125: 168-74, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25577698

RESUMEN

In this study, electrokinetic-Fenton treatment was used to remediate a soil polluted with PAHs and the pesticide pyrimethanil. Recently, this treatment has emerged as an interesting alternative to conventional soil treatments due to its peculiar advantages, namely the capability of treating fine and low-permeability materials, as well as that of achieving a high yield in the removals of salt content and inorganic and organic pollutants. In a standard electrokinetic-Fenton treatment, the maximum degradation of the pollutant load achieved was 67%, due to the precipitation of the metals near the cathode chamber that reduces the electro-osmotic flow of the system and thus the efficiency of the treatment. To overcome this problem, different complexing agents and pH control in the cathode chamber were evaluated to increase the electro-osmotic flux as well as to render easier the solubilization of the metal species present in the soil. Four complexing agents (ascorbic acid, citric acid, oxalic acid and ethylenediaminetetraacetic acid) in the Fenton-like treatment were evaluated. Results revealed the citric acid as the most suitable complexing agent. Thereby its efficiency was tested as pH controller by flushing it in the cathode chamber (pH 2 and 5). For the latter treatments, near total degradation was achieved after 27 d. Finally, phytotoxicity tests for polluted and treated samples were carried out. The high germination levels of the soil treated under enhanced conditions concluded that nearly complete restoration was achieved.


Asunto(s)
Técnicas Electroquímicas/métodos , Peróxido de Hidrógeno/química , Hierro/química , Plaguicidas/aislamiento & purificación , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Contaminantes del Suelo/aislamiento & purificación , Suelo/química , Ácido Ascórbico , Ácido Cítrico/química , Ácido Edético/química , Electrodos , Concentración de Iones de Hidrógeno , Ácido Oxálico/química , Permeabilidad , Plaguicidas/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Pirimidinas , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA