Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1403752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975343

RESUMEN

Type 1 diabetes (T1D) arises from autoimmune-mediated destruction of insulin-producing pancreatic beta cells. Recent advancements in the technology of generating pancreatic beta cells from human pluripotent stem cells (SC-beta cells) have facilitated the exploration of cell replacement therapies for treating T1D. However, the persistent threat of autoimmunity poses a significant challenge to the survival of transplanted SC-beta cells. Genetic engineering is a promising approach to enhance immune resistance of beta cells as we previously showed by inactivating the Renalase (Rnls) gene. Here, we demonstrate that Rnls loss of function in beta cells shapes autoimmunity by mediating a regulatory natural killer (NK) cell phenotype important for the induction of tolerogenic antigen-presenting cells. Rnls-deficient beta cells mediate cell-cell contact-independent induction of hallmark anti-inflammatory cytokine Tgfß1 in NK cells. In addition, surface expression of regulatory NK immune checkpoints CD47 and Ceacam1 is markedly elevated on beta cells deficient for Rnls. Altered glucose metabolism in Rnls mutant beta cells is involved in the upregulation of CD47 surface expression. These findings are crucial to better understand how genetically engineered beta cells shape autoimmunity, giving valuable insights for future therapeutic advancements to treat and cure T1D.


Asunto(s)
Autoinmunidad , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Células Asesinas Naturales , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Animales , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo , Ratones , Diabetes Mellitus Tipo 1/inmunología , Humanos , Antígeno CD47/metabolismo , Antígeno CD47/genética , Antígeno CD47/inmunología , Factor de Crecimiento Transformador beta1/metabolismo , Ratones Endogámicos NOD , Monoaminooxidasa
2.
bioRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798376

RESUMEN

Replenishment of pancreatic beta cells is a key to the cure for diabetes. Beta cells regeneration is achieved predominantly by self-replication especially in rodents, but it was also shown that pancreatic duct cells can transdifferentiate into beta cells. How pancreatic duct cells undergo transdifferentiated and whether we could manipulate the transdifferentiation to replenish beta cell mass is not well understood. Using a genome-wide CRISPR screen, we discovered that loss-of-function of ALDH3B2 is sufficient to transdifferentiate human pancreatic duct cells into functional beta-like cells. The transdifferentiated cells have significant increase in beta cell marker genes expression, secrete insulin in response to glucose, and reduce blood glucose when transplanted into diabetic mice. Our study identifies a novel gene that could potentially be targeted in human pancreatic duct cells to replenish beta cell mass for diabetes therapy.

3.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496417

RESUMEN

Type 1 diabetes (T1D) arises from autoimmune-mediated destruction of insulin-producing pancreatic beta cells. Recent advancements in the technology of generating pancreatic beta cells from human pluripotent stem cells (SC-beta cells) have facilitated the exploration of cell replacement therapies for treating T1D. However, the persistent threat of autoimmunity poses a significant challenge to the survival of transplanted SC-beta cells. Genetic engineering is a promising approach to enhance immune resistance of beta cells as we previously showed by inactivating of the Renalase (Rnls) gene. Here we demonstrate that Rnls loss-of-function in beta cells shape autoimmunity by mediating a regulatory Natural Killer (NK) cell phenotype important for the induction of tolerogenic antigen presenting cells. Rnls-deficient beta cells mediate cell-cell-contact-independent induction of hallmark anti-inflammatory cytokine Tgfß1 in NK cells. In addition, surface expression of key regulatory NK immune checkpoints CD47 and Ceacam1 are markedly elevated on beta cells deficient for Rnls. Enhanced glucose metabolism in Rnls mutant beta cells is responsible for upregulation of CD47 surface expression. These findings are crucial to a better understand how genetically engineered beta cells shape autoimmunity giving valuable insights for future therapeutic advancements to treat and cure T1D.

4.
Ann Intern Med ; 177(3): 315-323, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38373302

RESUMEN

BACKGROUND: Glucocorticoids suppress inflammation. Autoimmune disease may occur after remission of Cushing's disease (CD). However, the development of autoimmune disease in this context is not well described. OBJECTIVE: To determine 1) the incidence of autoimmune disease in patients with CD after surgical remission compared with patients with nonfunctioning pituitary adenomas (NFPAs) and 2) the clinical presentation of and risk factors for development of autoimmune disease in CD after remission. DESIGN: Retrospective matched cohort analysis. SETTING: Academic medical center/pituitary center. PATIENTS: Patients with CD with surgical remission and surgically treated NFPA. MEASUREMENTS: Cumulative incidence of new-onset autoimmune disease at 3 years after surgery. Assessment for hypercortisolemia included late-night salivary cortisol levels, 24-hour urine free cortisol (UFC) ratio (UFC value divided by the upper limit of the normal range for the assay), and dexamethasone suppression tests. RESULTS: Cumulative incidence of new-onset autoimmune disease at 3 years after surgery was higher in patients with CD (10.4% [95% CI, 5.7% to 15.1%]) than in those with NFPAs (1.6% [CI, 0% to 4.6%]) (hazard ratio, 7.80 [CI, 2.88 to 21.10]). Patients with CD showed higher prevalence of postoperative adrenal insufficiency (93.8% vs. 16.5%) and lower postoperative nadir serum cortisol levels (63.8 vs. 282.3 nmol/L) than patients with NFPAs. Compared with patients with CD without autoimmune disease, those who developed autoimmune disease had a lower preoperative 24-hour UFC ratio (2.7 vs. 6.3) and a higher prevalence of family history of autoimmune disease (41.2% vs. 20.9%). LIMITATION: The small sample of patients with autoimmune disease limited identification of independent risk factors. CONCLUSION: Patients achieving surgical remission of CD have higher incidence of autoimmune disease than age- and sex-matched patients with NFPAs. Family history of autoimmune disease is a potential risk factor. Adrenal insufficiency may be a trigger. PRIMARY FUNDING SOURCE: Recordati Rare Diseases Inc.


Asunto(s)
Insuficiencia Suprarrenal , Enfermedades Autoinmunes , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Neoplasias Hipofisarias , Humanos , Estudios de Cohortes , Hidrocortisona , Estudios Retrospectivos , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/complicaciones , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/cirugía , Neoplasias Hipofisarias/complicaciones , Neoplasias Hipofisarias/cirugía , Insuficiencia Suprarrenal/complicaciones , Enfermedades Autoinmunes/complicaciones
5.
Redox Biol ; 64: 102795, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37379662

RESUMEN

Reactive oxygen species (ROS) are a family of highly reactive molecules with numerous, often pleiotropic functions within the cell and the organism. Due to their potential to destroy biological structures such as membranes, enzymes and organelles, ROS have long been recognized as harmful yet unavoidable by-products of cellular metabolism leading to "oxidative stress" unless counterbalanced by cellular anti-oxidative defense mechanisms. Phagocytes utilize this destructive potential of ROS released in high amounts to defend against invading pathogens. In contrast, a regulated and fine-tuned release of "signaling ROS" (sROS) provides essential intracellular second messengers to modulate central aspects of immunity, including antigen presentation, activation of antigen presenting cells (APC) as well as the APC:T cell interaction during T cell activation. This regulated release of sROS is foremost attributed to the specialized enzyme NADPH-oxidase (NOX) 2 expressed mainly in myeloid cells such as neutrophils, macrophages and dendritic cells (DC). NOX-2-derived sROS are primarily involved in immune regulation and mediate protection against autoimmunity as well as maintenance of self-tolerance. Consequently, deficiencies in NOX2 not only result in primary immune-deficiencies such as Chronic Granulomatous Disease (CGD) but also lead to auto-inflammatory diseases and autoimmunity. A comprehensive understanding of NOX2 activation and regulation will be key for successful pharmaceutical interventions of such ROS-related diseases in the future. In this review, we summarize recent progress regarding immune regulation by NOX2-derived ROS and the consequences of its deregulation on the development of immune disorders.


Asunto(s)
Enfermedad Granulomatosa Crónica , NADPH Oxidasas , Humanos , Especies Reactivas de Oxígeno/metabolismo , NADPH Oxidasas/metabolismo , Neutrófilos/metabolismo , Enfermedad Granulomatosa Crónica/metabolismo , Fagocitos/metabolismo
6.
Diabetes ; 72(8): 1127-1143, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216639

RESUMEN

Type 1 diabetes (T1D) is caused by the immune-mediated loss of pancreatic ß-cells that produce insulin. The latest advances in stem cell (SC) ß-cell differentiation methods have made a cell replacement therapy for T1D feasible. However, recurring autoimmunity would rapidly destroy transplanted SC ß-cells. A promising strategy to overcome immune rejection is to genetically engineer SC ß-cells. We previously identified Renalase (Rnls) as a novel target for ß-cell protection. Here we show that Rnls deletion endows ß-cells with the capacity to modulate the metabolism and function of immune cells within the local graft microenvironment. We used flow cytometry and single-cell RNA sequencing to characterize ß-cell graft-infiltrating immune cells in a mouse model for T1D. Loss of Rnls within transplanted ß-cells affected both the composition and the transcriptional profile of infiltrating immune cells in favor of an anti-inflammatory profile with decreased antigen-presenting capacity. We propose that changes in ß-cell metabolism mediate local immune regulation and that this feature could be exploited for therapeutic goals. ARTICLE HIGHLIGHTS: Protective Renalase (Rnls) deficiency impacts ß-cell metabolism. Rnls-deficient ß-cell grafts do not exclude immune infiltration. Rnls deficiency in transplanted ß-cells broadly modifies local immune function. Immune cell in Rnls mutant ß-cell grafts adopt a noninflammatory phenotype.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ratones , Animales , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Antígenos
7.
bioRxiv ; 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36993342

RESUMEN

Regulatory T cells (Tregs) protect against autoimmunity. In type 1 diabetes (T1D), Tregs slow the progression of beta cell autoimmunity within pancreatic islets. Increasing the potency or frequency of Tregs can prevent diabetes, as evidenced by studies in the nonobese diabetic (NOD) mouse model for T1D. We report herein that a significant proportion of islets Tregs in NOD mice express Gata3. The expression of Gata3 was correlated with the presence of IL-33, a cytokine known to induce and expand Gata3+ Tregs. Despite significantly increasing the frequency of Tregs in the pancreas, exogenous IL-33 was not protective. Based on these data, we hypothesized that Gata3 is deleterious to Treg function in autoimmune diabetes. To test this notion, we generated NOD mice with a Treg-specific deletion of Gata3. We found that deleting Gata3 in Tregs strongly protected against diabetes. Disease protection was associated with a shift of islet Tregs toward a suppressive CXCR3+Foxp3+ population. Our results suggest that islet Gata3+ Tregs are maladaptive and that this Treg subpopulation compromises the regulation of islet autoimmunity, contributing to diabetes onset.

8.
J Vis Exp ; (189)2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36468712

RESUMEN

Type 1 diabetes is characterized by the autoimmune destruction of the insulin-producing beta cells of the pancreas. A promising treatment for this disease is the transplantation of stem cell-derived beta cells. Genetic modifications, however, may be necessary to protect the transplanted cells from persistent autoimmunity. Diabetic mouse models are a useful tool for the preliminary evaluation of strategies to protect transplanted cells from autoimmune attack. Described here is a minimally invasive method for transplanting and imaging cell grafts in an adoptive transfer model of diabetes in mice. In this protocol, cells from the murine pancreatic beta cell line NIT-1 expressing the firefly luciferase transgene luc2 are transplanted subcutaneously into immunodeficient non-obese diabetic (NOD)-severe combined immunodeficient (scid) mice. These mice are simultaneously injected intravenously with splenocytes from spontaneously diabetic NOD mice to transfer autoimmunity. The grafts are imaged at regular intervals via non-invasive bioluminescent imaging to monitor the cell survival. The survival of mutant cells is compared to that of control cells transplanted into the same mouse.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ratones , Animales , Ratones Endogámicos NOD , Diabetes Mellitus Tipo 1/terapia , Supervivencia de Injerto , Traslado Adoptivo , Ratones SCID
9.
Bio Protoc ; 10(17): e3737, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659398

RESUMEN

Depending on its concentration and cellular origin the production of reactive oxygen species (ROS) in the organism serves a variety of functions. While high concentrations during an oxidative burst are used to fight pathogens, low to moderate amounts of ROS act as signaling molecules important for several physiological processes such as regulation of immune responses. The ROS-sensitive dye 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) is an inexpensive and well-established tool for measuring intracellular ROS levels. However, it needs to be carefully controlled to be able to draw firm conclusions on the nature of ROS species produced and the cellular source of ROS generation such as the enzyme complex NADPH-oxidase 2 (NOX-2). In this protocol, a robust method to determine low intracellular ROS production using H2DCFDA was validated by several ROS-specific as well as NOX-2-specific inhibitors. Cells were treated with inhibitors or control substances prior to treatment with the ROS-inducer of interest. H2DCFDA was added only for the last 30 min of the treatment schedule. To terminate its conversion, we used a ROS-specific inhibitor until analysis by flow cytometry within the FITC-channel (Ex: 488 nm/Em: 519 nm). In summary, this protocol allows the detection of signaling-relevant intracellular ROS production in cell lines and primary immune cells (e.g., Mono Mac 6 cells and Bone marrow-derived dendritic cells, respectively). Using this method in combination with specific inhibitors, we were able to validate even exceptionally low amounts of ROS produced by NOX-2 and relevant for immune-regulatory signaling.

10.
Cell Rep ; 29(13): 4435-4446.e9, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875551

RESUMEN

Uptake of apoptotic cells (ACs) by dendritic cells (DCs) and induction of a tolerogenic DC phenotype is an important mechanism for establishing peripheral tolerance to self-antigens. The receptors involved and underlying signaling pathways are not fully understood. Here, we identify Dectin-1 as a crucial tolerogenic receptor binding with nanomolar affinity to the core domain of several annexins (annexin A1, A5, and A13) exposed on ACs. Annexins bind to Dectin-1 on a site distinct from the interaction site of pathogen-derived ß-glucans. Subsequent tolerogenic signaling induces selective phosphorylation of spleen tyrosine kinase (SYK), causing activation of NADPH oxidase-2 and moderate production of reactive oxygen species. Thus, mice deficient for Dectin-1 develop autoimmune pathologies (autoantibodies and splenomegaly) and generate stronger immune responses (cytotoxic T cells) against ACs. Our data describe an important immunological checkpoint system and provide a link between immunosuppressive signals of ACs and maintenance of peripheral immune tolerance.


Asunto(s)
Anexinas/metabolismo , Apoptosis , Lectinas Tipo C/metabolismo , NADPH Oxidasa 2/metabolismo , Tolerancia Periférica , Envejecimiento/metabolismo , Animales , Anexinas/química , Antígenos/metabolismo , Autoinmunidad , Sitios de Unión , Secuencia Conservada/genética , Drosophila , Femenino , Humanos , Terapia de Inmunosupresión , Células Jurkat , Masculino , Ratones Noqueados , FN-kappa B/metabolismo , Fosforilación , Unión Proteica , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo , Quinasa Syk/metabolismo , beta-Glucanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...