Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Neurobiol ; 74(12): 1226-42, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24909416

RESUMEN

The hippocampus is one of the two areas in the mammalian brain where adult neurogenesis occurs. Adult neurogenesis is well known to be involved in hippocampal physiological functions as well as pathophysiological conditions. Microtubules (MTs), providing intracellular transport, stability, and transmitting force, are indispensable for neurogenesis by facilitating cell division, migration, growth, and differentiation. Although there are several examples of MT-stabilizing proteins regulating different aspects of adult neurogenesis, relatively little is known about the function of MT-destabilizing proteins. Stathmin is such a MT-destabilizing protein largely restricted to the CNS, and in contrast to its developmental family members, stathmin is also expressed at significant levels in the adult brain, notably in areas involved in adult neurogenesis. Here, we show an important role for stathmin during adult neurogenesis in the subgranular zone of the mouse hippocampus. After carefully mapping stathmin expression in the adult dentate gyrus (DG), we investigated its role in hippocampal neurogenesis making use of stathmin knockout mice. Although hippocampus development appears normal in these animals, different aspects of adult neurogenesis are affected. First, the number of proliferating Ki-67+ cells is decreased in stathmin knockout mice, as well as the expression of the immature markers Nestin and PSA-NCAM. However, newborn cells that do survive express more frequently the adult marker NeuN and have a more mature morphology. Furthermore, our data suggest that migration in the DG might be affected. We propose a model in which stathmin controls the transition from neuronal precursors to early postmitotic neurons.


Asunto(s)
Hipocampo/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Estatmina/metabolismo , Animales , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Proteínas de Unión al ADN , Hipocampo/citología , Antígeno Ki-67/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Nestina/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Células-Madre Neurales/citología , Neuronas/citología , Proteínas Nucleares/metabolismo , Ácidos Siálicos/metabolismo , Estatmina/genética
2.
J Comp Neurol ; 507(4): 1639-52, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18231966

RESUMEN

During corticogenesis, radial glia-derived neural progenitors divide and migrate along radial fibers to their designated positions within the cortical plate. The microtubule-associated proteins doublecortin (DCX) and doublecortin-like (DCL) are critically involved in neuronal migration and division, and may function in a partially redundant pathway. Since little is known about the important early stages of corticogenesis, when neurogenesis is extensive, we addressed a possible differential role by examining spatiotemporal expression patterns of DCX, DCL, and the radial glia marker vimentin during murine development. We found expression patterns of DCL and DCX to differ remarkably prior to embryonic day (E)13. DCL was already expressed at E9 and largely overlapped with vimentin, whereas DCX expression started modestly from E10/E11 onward. DCL was mainly found in the ventricular zone, often in mitotic cells and in pial-oriented radial fibers. In contrast, DCX was expressed in tangential fibers in the outer cortical regions. After E13, DCX and DCL expression largely overlapped but DCL expression had disappeared from the ventricular zone. Also, DCL levels were attenuated, whereas DCX remained high beyond E17. In conclusion, DCX and DCL are differentially expressed, particularly during early corticogenesis, consistent with their different functional roles. Given its involvement in mitosis, DCL appears to have a unique role in the early neuroepithelium that is different from later developmental stages when DCX is coexpressed.


Asunto(s)
Proteínas Asociadas a Microtúbulos/biosíntesis , Neocórtex/embriología , Neocórtex/metabolismo , Neuropéptidos/biosíntesis , Proteínas Serina-Treonina Quinasas/biosíntesis , Animales , Movimiento Celular/fisiología , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Quinasas Similares a Doblecortina , Embrión de Mamíferos , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Ratones , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Células Madre/metabolismo , Vimentina/biosíntesis
3.
Eur Arch Psychiatry Clin Neurosci ; 257(5): 281-9, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17639447

RESUMEN

Alzheimer's disease and related dementias are devastating disorders that lead to the progressive decline of cognitive functions. Characteristic features are severe brain atrophy, paralleled by accumulation of beta amyloid and neurofibrillary tangles. With the discovery of neurogenesis in the adult brain, the hopes have risen that these neurodegenerative conditions could be overcome, or at least ameliorated, by the generation of new neurons. The location of the adult neurogenic zones in the hippocampus and the lateral ventricle wall, close to corpus callosum and neocortex, indicates strategic positions for potential repair processes. However, we also need to consider that the generation of new neurons is possibly involved in cognitive functions and could, therefore, be influenced by disease pathology. Moreover, aberrant neurogenic mechanisms could even be a part of the pathological events of neurodegenerative diseases. It is the scope of this review to summarize and analyze the recent data from neurogenesis research with respect to Alzheimer's disease and its animal models.


Asunto(s)
Enfermedad de Alzheimer/patología , Demencia/patología , Neuronas/patología , Enfermedad de Alzheimer/prevención & control , Animales , Encéfalo/patología , Proteínas de Ciclo Celular/metabolismo , Demencia/prevención & control , Modelos Animales de Enfermedad , Ambiente , Hipocampo/patología , Humanos , Ratones , Proteínas tau/biosíntesis , Proteínas tau/genética
4.
FASEB J ; 21(9): 2149-61, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17341679

RESUMEN

Differential isoform expression and phosphorylation of protein tau are believed to regulate the assembly and stabilization of microtubuli in fetal and adult neurons. To define the functions of tau in the developing and adult brain, we generated transgenic mice expressing the human tau-4R/2N (htau-4R) isoform on a murine tau null background, by a knockout/knockin approach (tau-KOKI). The main findings in these mice were the significant increases in hippocampal volume and neuronal number, which were sustained throughout adult life and paralleled by improved cognitive functioning. The increase in hippocampal size was found to be due to increased neurogenesis and neuronal survival. Proliferation and neuronal differentiation were further analyzed in primary hippocampal cultures from tau-KOKI mice, before and after htau-4R expression onset. In absence of tau, proliferation increased and both neurite and axonal outgrowth were reduced. Htau-4R expression suppressed proliferation, promoted neuronal differentiation, and restored neurite and axonal outgrowth. We suggest that the tau-4R isoform essentially contributes to hippocampal development by controlling proliferation and differentiation of neuronal precursors.


Asunto(s)
Hipocampo/citología , Neuronas/citología , Proteínas tau/fisiología , Animales , Diferenciación Celular , División Celular , Cruzamientos Genéticos , Transferencia de Embrión , Células Madre Embrionarias , Conducta Exploratoria , Vectores Genéticos , Hipocampo/crecimiento & desarrollo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microinyecciones , Neuritas/ultraestructura , Tamaño de los Órganos , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Reconocimiento en Psicología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/fisiología , Células Madre/citología , Transducción Genética , Proteínas tau/química , Proteínas tau/genética
5.
Eur J Neurosci ; 25(3): 635-48, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17313568

RESUMEN

During corticogenesis, progenitors divide within the ventricular zone where they rely on radial process extensions, formed by radial glial cell (RG) scaffolds, along which they migrate to the proper layers of the cerebral cortex. Although the microtubule-associated proteins doublecortin (DCX) and doublecortin-like kinase (DCLK) are critically involved in dynamic rearrangement of the cytoskeletal machinery that allow migration, little is known about their role in early corticogenesis. Here we have functionally characterized a mouse splice-variant of DCLK, doublecortin-like (DCL), exhibiting 73% amino acid sequence identity with DCX over its entire length. Unlike DCX, DCL is expressed from embryonic day 8 onwards throughout the early neuroepithelium. It is localized in mitotic cells, RGs and radial processes. DCL knockdown using siRNA in vitro induces spindle collapse in dividing neuroblastoma cells, whereas overexpression results in elongated and asymmetrical mitotic spindles. In vivo knockdown of the DCLK gene by in utero electroporation significantly reduced cell numbers in the inner proliferative zones and dramatically disrupted most radial processes. Our data emphasize the unique role of the DCLK gene in mitotic spindle integrity during early neurogenesis. In addition, they indicate crucial involvement of DCLK in RG proliferation and their radial process stability, a finding that has thus far not been attributed to DCX or DCLK.


Asunto(s)
Neocórtex/embriología , Neuroglía/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Células Madre/citología , Secuencia de Aminoácidos , Animales , División Celular/fisiología , Movimiento Celular/fisiología , Clonación Molecular , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Quinasas Similares a Doblecortina , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/fisiología , Datos de Secuencia Molecular , Neocórtex/citología , Neocórtex/fisiología , Neuronas/citología , Neuropéptidos/genética , Embarazo , ARN Interferente Pequeño , Huso Acromático/fisiología , Células Madre/fisiología
6.
Neurobiol Dis ; 24(1): 1-14, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16814555

RESUMEN

Adult proliferation and hippocampal neurogenesis are stimulated by injury. In agreement, aberrant cell-cycle-related protein expression has been reported in senile Alzheimer's disease (AD), where the hippocampus is particularly affected. Recently, increased expression of doublecortin (DCX), a neurogenesis marker, was reported in senile AD. Here, we addressed whether proliferative and neurogenic responses also occur in younger, i.e., presenile AD cases, using immunohistochemistry for Ki-67, GFAP and DCX. Increased numbers of Ki-67+ cells with a healthy, non-mature appearance were found in CA1-3. These were mainly due to glial and vasculature-associated changes, while DCX immunostaining appeared sensitive to postmortem breakdown. We found no indications for altered dentate gyrus neurogenesis. Our data obtained using validated methodology in a well-characterized, presenile cohort thus differ from previous data obtained in senile AD. They reflect clear differences in proliferative responsivity, particularly in the glia and vascular components, and suggest different underlying mechanisms in these groups.


Asunto(s)
Enfermedad de Alzheimer/patología , Vasos Sanguíneos/fisiología , Hipocampo/patología , Neuroglía/fisiología , Neuronas/fisiología , Anciano , Antimetabolitos , Vasos Sanguíneos/citología , Vasos Sanguíneos/ultraestructura , Bromodesoxiuridina , Proliferación Celular , Circulación Cerebrovascular , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/irrigación sanguínea , Hipocampo/ultraestructura , Humanos , Inmunohistoquímica , Antígeno Ki-67/metabolismo , Masculino , Persona de Mediana Edad , Fibras Nerviosas/patología , Neuroglía/ultraestructura , Neuronas/ultraestructura , Bancos de Tejidos
7.
J Neurosci ; 26(13): 3514-23, 2006 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-16571759

RESUMEN

The microtubule binding protein tau is implicated in neurodegenerative tauopathies, including frontotemporal dementia (FTD) with Parkinsonism caused by diverse mutations in the tau gene. Hyperphosphorylation of tau is considered crucial in the age-related formation of neurofibrillary tangles (NFTs) correlating well with neurotoxicity and cognitive defects. Transgenic mice expressing FTD mutant tau-P301L recapitulate the human pathology with progressive neuronal impairment and accumulation of NFT. Here, we studied tau-P301L mice for parameters of learning and memory at a young age, before hyperphosphorylation and tauopathy were apparent. Unexpectedly, in young tau-P301L mice, increased long-term potentiation in the dentate gyrus was observed in parallel with improved cognitive performance in object recognition tests. Neither tau phosphorylation, neurogenesis, nor other morphological parameters that were analyzed could account for these cognitive changes. The data demonstrate that learning and memory processes in the hippocampus of young tau-P301L mice are not impaired and actually improved in the absence of marked phosphorylation of human tau. We conclude that protein tau plays an important beneficial role in normal neuronal processes of hippocampal memory, and conversely, that not tau mutations per se, but the ensuing hyperphosphorylation must be critical for cognitive decline in tauopathies.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Neuronas/fisiología , Tauopatías/fisiopatología , Proteínas tau/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hipocampo/citología , Masculino , Ratones , Ratones Transgénicos , Neuronas/citología , Fosforilación , Tauopatías/patología , Factores de Tiempo , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA