Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Faraday Discuss ; 228(0): 451-469, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-33605959

RESUMEN

We present a combined theoretical and experimental study of X-ray optical wave mixing. This class of nonlinear phenomena combines the strengths of spectroscopic techniques from the optical domain, with the high-resolution capabilities of X-rays. In particular, the spectroscopic sensitivity of these phenomena can be exploited to selectively probe valence dynamics. Specifically, we focus on the effect of X-ray parametric down-conversion. We present a theoretical description of the process, from which we deduce the observable nonlinear response of valence charges. Subsequently, we simulate scattering patterns for realistic conditions and identify characteristic signatures of the nonlinear conversion. For the observation of this signature, we present a dedicated experimental setup and results of a detailed investigation. However, we do not find evidence of the nonlinear effect. This finding stands in strong contradiction to previous claims of proof-of-principle demonstrations. Nevertheless, we are optimistic to employ related X-ray optical wave mixing processes on the basis of the methods presented here for probing valence dynamics in the future.

2.
Sci Rep ; 11(1): 3562, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574378

RESUMEN

We present a novel, highly versatile, and self-referenced arrival time monitor for measuring the femtosecond time delay between a hard X-ray pulse from a free-electron laser and an optical laser pulse, measured directly on the same sample used for pump-probe experiments. Two chirped and picosecond long optical supercontinuum pulses traverse the sample with a mutually fixed time delay of 970 fs, while a femtosecond X-ray pulse arrives at an instant in between both pulses. Behind the sample the supercontinuum pulses are temporally overlapped to yield near-perfect destructive interference in the absence of the X-ray pulse. Stimulation of the sample with an X-ray pulse delivers non-zero contributions at certain optical wavelengths, which serve as a measure of the relative arrival time of the X-ray pulse with an accuracy of better than 25 fs. We find an excellent agreement of our monitor with the existing timing diagnostics at the SACLA XFEL with a Pearson correlation value of 0.98. We demonstrate a high sensitivity to measure X-ray pulses with pulse energies as low as 30 [Formula: see text]J. Using a free-flowing liquid jet as interaction sample ensures the full replacement of the sample volume for each X-ray/optical event, thus enabling its utility even at MHz repetition rate XFEL sources.

3.
J Phys Chem C Nanomater Interfaces ; 121(5): 2620-2626, 2017 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28580048

RESUMEN

We probe the dynamics of valence electrons in photoexcited [Fe(terpy)2]2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete 1s X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitals directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA