Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Neurotherapeutics ; 21(3): e00364, 2024 Apr.
Article En | MEDLINE | ID: mdl-38669936

Surgical neuromodulation has witnessed significant progress in recent decades. Notably, deep brain stimulation (DBS), delivered precisely within therapeutic targets, has revolutionized the treatment of medication-refractory movement disorders and is now expanding for refractory psychiatric disorders, refractory epilepsy, and post-stroke motor recovery. In parallel, the advent of incisionless treatment with focused ultrasound ablation (FUSA) can offer patients life-changing symptomatic relief. Recent research has underscored the potential to further optimize DBS and FUSA outcomes by conceptualizing the therapeutic targets as critical nodes embedded within specific brain networks instead of strictly anatomical structures. This paradigm shift was facilitated by integrating two imaging modalities used regularly in brain connectomics research: diffusion MRI (dMRI) and functional MRI (fMRI). These advanced imaging techniques have helped optimize the targeting and programming techniques of surgical neuromodulation, all while holding immense promise for investigations into treating other neurological and psychiatric conditions. This review aims to provide a fundamental background of advanced imaging for clinicians and scientists, exploring the synergy between current and future approaches to neuromodulation as they relate to dMRI and fMRI capabilities. Focused research in this area is required to optimize existing, functional neurosurgical treatments while serving to build an investigative infrastructure to unlock novel targets to alleviate the burden of other neurological and psychiatric disorders.


Deep Brain Stimulation , Magnetic Resonance Imaging , Humans , Deep Brain Stimulation/methods , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/trends , Brain/diagnostic imaging , Brain/physiology , Neurosurgical Procedures/methods
2.
Pediatr Neurol ; 152: 41-55, 2024 Mar.
Article En | MEDLINE | ID: mdl-38198979

BACKGROUND AND OBJECTIVES: In acute brain injury of neonates, resting-state functional magnetic resonance imaging (MRI) (RS) showed incremental association with consciousness, mortality, cognitive and motor development, and epilepsy, with correction for multiple comparisons, at six months postgestation in neonates with suspected acute brain injury (ABI). However, there are relatively few developmental milestones at six months to benchmark against, thus, we extended this cohort study to evaluate two-year outcomes. METHODS: In 40 consecutive neonates with ABI and RS, ordinal scores of resting-state networks; MRI, magnetic resonance spectroscopy, and electroencephalography; and up to 42-month outcomes of mortality, general and motor development, Pediatric Cerebral Performance Category Scale (PCPC), and epilepsy informed associations between tests and outcomes. RESULTS: Mean gestational age was 37.8 weeks, 68% were male, and 60% had hypoxic-ischemic encephalopathy. Three died in-hospital, four at six to 42 months, and five were lost to follow-up. Associations included basal ganglia network with PCPC (P = 0.0003), all-mortality (P = 0.005), and motor (P = 0.0004); language/frontoparietal network with developmental delay (P = 0.009), PCPC (P = 0.006), and all-mortality (P = 0.01); default mode network with developmental delay (P = 0.003), PCPC (P = 0.004), neonatal intensive care unit mortality (P = 0.01), and motor (P = 0.009); RS seizure onset zone with epilepsy (P = 0.01); and anatomic MRI with epilepsy (P = 0.01). CONCLUSION: For the first time, at any age, resting state functional MRI in ABI is associated with long-term epilepsy and RSNs predicted mortality in neonates. Severity of RSN abnormality was associated with incrementally worsened neurodevelopment including cognition, language, and motor function over two years.


Brain Injuries , Epilepsy , Child , Infant, Newborn , Humans , Male , Infant , Female , Cohort Studies , Epilepsy/diagnostic imaging , Epilepsy/etiology , Cognition , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain Mapping
3.
Neurocrit Care ; 40(1): 65-73, 2024 Feb.
Article En | MEDLINE | ID: mdl-38062304

BACKGROUND: The fundamental gap obstructing forward progress of evidenced-based care in pediatric and neonatal disorders of consciousness (DoC) is the lack of defining consensus-based terminology to perform comparative research. This lack of shared nomenclature in pediatric DoC stems from the inherently recursive dilemma of the inability to reliably measure consciousness in the very young. However, recent advancements in validated clinical examinations and technologically sophisticated biomarkers of brain activity linked to future abilities are unlocking this previously formidable challenge to understanding the DoC in the developing brain. METHODS: To address this need, the first of its kind international convergence of an interdisciplinary team of pediatric DoC experts was organized by the Neurocritical Care Society's Curing Coma Campaign. The multidisciplinary panel of pediatric DoC experts proposed pediatric-tailored common data elements (CDEs) covering each of the CDE working groups including behavioral phenotyping, biospecimens, electrophysiology, family and goals of care, neuroimaging, outcome and endpoints, physiology and big Data, therapies, and pediatrics. RESULTS: We report the working groups' pediatric-focused DoC CDE recommendations and disseminate CDEs to be used in studies of pediatric patients with DoC. CONCLUSIONS: The CDEs recommended support the vision of progressing collaborative and successful internationally collaborative pediatric coma research.


Biomedical Research , Common Data Elements , Infant, Newborn , Humans , Child , Consciousness , Coma/diagnosis , Coma/therapy , Consciousness Disorders/diagnosis , Consciousness Disorders/therapy
4.
Semin Neurol ; 43(5): 712-734, 2023 10.
Article En | MEDLINE | ID: mdl-37788679

Although research studies have begun to demonstrate relationships between disorders of consciousness and brain network biomarkers, there are limited data on the practical aspects of obtaining such network biomarkers to potentially guide care. As the state of knowledge continues to evolve, guidelines from professional societies such as the American and European Academies of Neurology and many experts have advocated that the risk-benefit ratio for the assessment of network biomarkers has begun to favor their application toward potentially detecting covert consciousness. Given the lack of detailed operationalization guidance and the context of the ethical implications, herein we offer a roadmap based on local institutional experience with the implementation of functional MRI in the neonatal, pediatric, and adult intensive care units of our local government-supported health system. We provide a case-based demonstrative approach intended to review the current literature and to assist with the initiation of such services at other facilities.


Brain , Consciousness , Adult , Child , Humans , Infant, Newborn , Biomarkers , Brain/diagnostic imaging , Consciousness Disorders/diagnostic imaging , Intensive Care Units , Magnetic Resonance Imaging , United States
6.
Neurocrit Care ; 39(3): 611-617, 2023 Dec.
Article En | MEDLINE | ID: mdl-37552410

BACKGROUND: Over the past 5 decades, advances in neuroimaging have yielded insights into the pathophysiologic mechanisms that cause disorders of consciousness (DoC) in patients with severe brain injuries. Structural, functional, metabolic, and perfusion imaging studies have revealed specific neuroanatomic regions, such as the brainstem tegmentum, thalamus, posterior cingulate cortex, medial prefrontal cortex, and occipital cortex, where lesions correlate with the current or future state of consciousness. Advanced imaging modalities, such as diffusion tensor imaging, resting-state functional magnetic resonance imaging (fMRI), and task-based fMRI, have been used to improve the accuracy of diagnosis and long-term prognosis, culminating in the endorsement of fMRI for the clinical evaluation of patients with DoC in the 2018 US (task-based fMRI) and 2020 European (task-based and resting-state fMRI) guidelines. As diverse neuroimaging techniques are increasingly used for patients with DoC in research and clinical settings, the need for a standardized approach to reporting results is clear. The success of future multicenter collaborations and international trials fundamentally depends on the implementation of a shared nomenclature and infrastructure. METHODS: To address this need, the Neurocritical Care Society's Curing Coma Campaign convened an international panel of DoC neuroimaging experts to propose common data elements (CDEs) for data collection and reporting in this field. RESULTS: We report the recommendations of this CDE development panel and disseminate CDEs to be used in neuroimaging studies of patients with DoC. CONCLUSIONS: These CDEs will support progress in the field of DoC neuroimaging and facilitate international collaboration.


Consciousness , Diffusion Tensor Imaging , Humans , Consciousness/physiology , Diffusion Tensor Imaging/adverse effects , Consciousness Disorders/etiology , Common Data Elements , Neuroimaging/methods , Magnetic Resonance Imaging/methods
7.
Front Neurol ; 14: 1227195, 2023.
Article En | MEDLINE | ID: mdl-37638177

The withdrawal of life-sustaining therapies is frequently considered for pediatric patients with severe acute brain injuries who are admitted to the intensive care unit. However, it is worth noting that some children with a resultant poor neurological status may ultimately survive and achieve a positive neurological outcome. Evidence suggests that adults with hidden consciousness may have a more favorable prognosis compared to those without it. Currently, no treatable network disorders have been identified in cases of severe acute brain injury, aside from seizures detectable through an electroencephalogram (EEG) and neurostimulation via amantadine. In this report, we present three cases in which multimodal brain network evaluation played a helpful role in patient care. This evaluation encompassed various assessments such as continuous video EEG, visual-evoked potentials, somatosensory-evoked potentials, auditory brainstem-evoked responses, resting-state functional MRI (rs-fMRI), and passive-based and command-based task-based fMRI. It is worth noting that the latter three evaluations are unique as they have not yet been established as part of the standard care protocol for assessing acute brain injuries in children with suppressed consciousness. The first patient underwent serial fMRIs after experiencing a coma induced by trauma. Subsequently, the patient displayed improvement following the administration of antiseizure medication to address abnormal signals. In the second case, a multimodal brain network evaluation uncovered covert consciousness, a previously undetected condition in a pediatric patient with acute brain injury. In both patients, this discovery potentially influenced decisions concerning the withdrawal of life support. Finally, the third patient serves as a comparative control case, demonstrating the absence of detectable networks. Notably, this patient underwent the first fMRI prior to experiencing brain death as a pediatric patient. Consequently, this case series illustrates the clinical feasibility of employing multimodal brain network evaluation in pediatric patients. This approach holds potential for clinical interventions and may significantly enhance prognostic capabilities beyond what can be achieved through standard testing methods alone.

8.
Neurocrit Care ; 38(2): 447-469, 2023 04.
Article En | MEDLINE | ID: mdl-36759418

This proceedings article presents the scope of pediatric coma and disorders of consciousness based on presentations and discussions at the First Pediatric Disorders of Consciousness Care and Research symposium held on September 14th, 2021. Herein we review the current state of pediatric coma care and research opportunities as well as shared experiences from seasoned researchers and clinicians. Salient current challenges and opportunities in pediatric and neonatal coma care and research were identified through the contributions of the presenters, who were Jose I. Suarez, MD, Nina F. Schor, MD, PhD, Beth S. Slomine, PhD Erika Molteni, PhD, and Jan-Marino Ramirez, PhD, and moderated by Varina L. Boerwinkle, MD, with overview by Mark Wainwright, MD, and subsequent audience discussion. The program, executively planned by Varina L. Boerwinkle, MD, Mark Wainwright, MD, and Michelle Elena Schober, MD, drove the identification and development of priorities for the pediatric neurocritical care community.


Coma , Consciousness Disorders , United States , Infant, Newborn , Humans , Child , National Institute of Neurological Disorders and Stroke (U.S.) , Consciousness
9.
Front Neurol ; 14: 1324461, 2023.
Article En | MEDLINE | ID: mdl-38274868

We evaluated whether integration of expert guidance on seizure onset zone (SOZ) identification from resting state functional MRI (rs-fMRI) connectomics combined with deep learning (DL) techniques enhances the SOZ delineation in patients with refractory epilepsy (RE), compared to utilizing DL alone. Rs-fMRI was collected from 52 children with RE who had subsequently undergone ic-EEG and then, if indicated, surgery for seizure control (n = 25). The resting state functional connectomics data were previously independently classified by two expert epileptologists, as indicative of measurement noise, typical resting state network connectivity, or SOZ. An expert knowledge integrated deep network was trained on functional connectomics data to identify SOZ. Expert knowledge integrated with DL showed a SOZ localization accuracy of 84.8 ± 4.5% and F1 score, harmonic mean of positive predictive value and sensitivity, of 91.7 ± 2.6%. Conversely, a DL only model yielded an accuracy of <50% (F1 score 63%). Activations that initiate in gray matter, extend through white matter, and end in vascular regions are seen as the most discriminative expert-identified SOZ characteristics. Integration of expert knowledge of functional connectomics can not only enhance the performance of DL in localizing SOZ in RE but also lead toward potentially useful explanations of prevalent co-activation patterns in SOZ. RE with surgical outcomes and preoperative rs-fMRI studies can yield expert knowledge most salient for SOZ identification.

10.
Brain ; 145(11): 3901-3915, 2022 11 21.
Article En | MEDLINE | ID: mdl-36412516

Over 15 million epilepsy patients worldwide have drug-resistant epilepsy. Successful surgery is a standard of care treatment but can only be achieved through complete resection or disconnection of the epileptogenic zone, the brain region(s) where seizures originate. Surgical success rates vary between 20% and 80%, because no clinically validated biological markers of the epileptogenic zone exist. Localizing the epileptogenic zone is a costly and time-consuming process, which often requires days to weeks of intracranial EEG (iEEG) monitoring. Clinicians visually inspect iEEG data to identify abnormal activity on individual channels occurring immediately before seizures or spikes that occur interictally (i.e. between seizures). In the end, the clinical standard mainly relies on a small proportion of the iEEG data captured to assist in epileptogenic zone localization (minutes of seizure data versus days of recordings), missing opportunities to leverage these largely ignored interictal data to better diagnose and treat patients. IEEG offers a unique opportunity to observe epileptic cortical network dynamics but waiting for seizures increases patient risks associated with invasive monitoring. In this study, we aimed to leverage interictal iEEG data by developing a new network-based interictal iEEG marker of the epileptogenic zone. We hypothesized that when a patient is not clinically seizing, it is because the epileptogenic zone is inhibited by other regions. We developed an algorithm that identifies two groups of nodes from the interictal iEEG network: those that are continuously inhibiting a set of neighbouring nodes ('sources') and the inhibited nodes themselves ('sinks'). Specifically, patient-specific dynamical network models were estimated from minutes of iEEG and their connectivity properties revealed top sources and sinks in the network, with each node being quantified by source-sink metrics. We validated the algorithm in a retrospective analysis of 65 patients. The source-sink metrics identified epileptogenic regions with 73% accuracy and clinicians agreed with the algorithm in 93% of seizure-free patients. The algorithm was further validated by using the metrics of the annotated epileptogenic zone to predict surgical outcomes. The source-sink metrics predicted outcomes with an accuracy of 79% compared to an accuracy of 43% for clinicians' predictions (surgical success rate of this dataset). In failed outcomes, we identified brain regions with high metrics that were untreated. When compared with high frequency oscillations, the most commonly proposed interictal iEEG feature for epileptogenic zone localization, source-sink metrics outperformed in predictive power (by a factor of 1.2), suggesting they may be an interictal iEEG fingerprint of the epileptogenic zone.


Epilepsy , Seizures , Humans , Retrospective Studies , Electrocorticography/methods , Epilepsy/diagnosis , Epilepsy/surgery , Biomarkers
11.
Neuroimage Clin ; 35: 103063, 2022.
Article En | MEDLINE | ID: mdl-35653912

The goal of this study was to determine resting state fMRI (rs-fMRI) effective connectivity (RSEC) capacity, agnostic of epileptogenic events, in distinguishing seizure onset zones (SOZ) from propagation zones (pZ). Consecutive patients (2.1-18.2 years old), with epilepsy and hypothalamic hamartoma, pre-operative rs-fMRI-directed surgery, post-operative imaging, and Engel class I outcomes were collected. Cross-spectral dynamic causal modelling (DCM) was used to estimate RSEC between the ablated rs-fMRI-SOZ to its region of highest connectivity outside the HH, defined as the propagation zone (pZ). Pre-operatively, RSEC from the SOZ and PZ was expected to be positive (excitatory), and pZ to SOZ negative (inhibitory), and post-operatively to be either diminished or non-existent. Sensitivity, accuracy, positive predictive value were determined for node-to-node connections. A Parametric Empirical Bayes (PEB) group analysis on pre-operative data was performed to identify group effects and effects of Engel class outcome and age. Pre-operative RSEC strength was also evaluated for correlation with percent seizure frequency improvement, sex, and region of interest size. Of the SOZ's RSEC, only 3.6% had no connection of significance to the pZ when patient models were individually reduced. Among remaining, 96% were in expected (excitatory signal found from SOZ â†’ pZ and inhibitory signal found from pZ â†’ SOZ) versus 3.6% reversed polarities. Both pre-operative polarity signals were equivalently as expected, with one false signal direction out of 26 each (3.7% total). Sensitivity of 95%, specificity 73%, accuracy of 88%, negative predictive value 88%, and positive predictive value of 88% in identifying and differentiating the SOZ and pZ. Groupwise PEB analysis confirmed SOZ â†’ pZ EC was excitatory, and pZ â†’ SOZ EC was inhibitory. Patients with better outcomes (Engel Ia vs. Ib) showed stronger inhibitory signal (pZ â†’ SOZ). Age was negatively associated with absolute RSEC bidirectionally but had no relationship with Directionality SOZ identification performance. In an additional hierarchical PEB analysis identifying changes from pre-to-post surgery, SOZ â†’ pZ modulation became less excitatory and pZ â†’ SOZ modulation became less inhibitory. This study demonstrates the accuracy of Directionality to identify the origin of excitatory and inhibitory signal between the surgically confirmed SOZ and the region of hypothesized propagation zone in children with DRE due to a HH. Thus, this method validation study in a homogenous DRE population may have potential in narrowing the SOZ-candidates for epileptogenicity in other DRE populations and utility in other neurological disorders.


Magnetic Resonance Imaging , Seizures , Adolescent , Bayes Theorem , Child , Child, Preschool , Electroencephalography , Humans , Neuronal Plasticity , Rest , Seizures/diagnostic imaging , Seizures/surgery
12.
Front Neurol ; 13: 847834, 2022.
Article En | MEDLINE | ID: mdl-35493815

In the evolving modern era of neuromodulation for movement disorders in adults and children, much progress has been made recently characterizing the human motor network (MN) with potentially important treatment implications. Herein is a focused review of relevant resting state fMRI functional and effective connectivity of the human motor network across the lifespan in health and disease. The goal is to examine how the transition from functional connectivity to dynamic effective connectivity may be especially informative of network-targeted movement disorder therapies, with hopeful implications for children.

13.
Neuroimage Clin ; 34: 102962, 2022.
Article En | MEDLINE | ID: mdl-35152054

BACKGROUND: An accurate and comprehensive test of integrated brain network function is needed for neonates during the acute brain injury period to inform on morbidity. This retrospective cohort study assessed whether integrated brain network function acquired by resting state functional MRI during the acute period in neonates with brain injury, is associated with acute exam, neonatal mortality, and 6-month outcomes. METHODS: Study subjects included 40 consecutive neonates with resting state functional MRI acquired within 31 days after suspected brain insult from March 2018 to July 2019 at Phoenix Children's Hospital. Acute-period exam and test results were assigned ordinal scores based on severity as documented by respective treating specialists. Analyses (Fisher exact, Wilcoxon-rank sum test, ordinal/multinomial logistic regression) examined association of resting state networks with demographics, presentation, neurological exam, electroencephalogram, anatomical MRI, magnetic resonance spectroscopy, passive task functional MRI, and outcomes of discharge condition, outpatient development, motor tone, seizure, and mortality. RESULTS: Subjects had a mean (standard deviation) gestational age of 37.8 (2.6) weeks, a majority were male (63%), with a diagnosis of hypoxic ischemic encephalopathy (68%). Findings at birth included mild distress (48%), moderately abnormal neurological exam (33%), and consciousness characterized as awake but irritable (40%). Significant associations after multiple testing corrections were detected for resting state networks: basal ganglia with outpatient developmental delay (odds ratio [OR], 14.5; 99.4% confidence interval [CI], 2.00-105; P < .001) and motor tone/weakness (OR, 9.98; 99.4% CI, 1.72-57.9; P < .001); language/frontoparietal network with discharge condition (OR, 5.13; 99.4% CI, 1.22-21.5; P = .002) and outpatient developmental delay (OR, 4.77; 99.4% CI, 1.21-18.7; P=.002); default mode network with discharge condition (OR, 3.72; 99.4% CI, 1.01-13.78; P=.006) and neurological exam (P = .002 (FE); OR, 11.8; 99.4% CI, 0.73-191; P = .01 (OLR)); and seizure onset zone with motor tone/weakness (OR, 3.31; 99.4% CI, 1.08-10.1; P=.003). Resting state networks were not detected in three neonates, who died prior to discharge. CONCLUSIONS: This study provides level 3 evidence (OCEBM Levels of Evidence Working Group) demonstrating that in neonatal acute brain injury, the degree of abnormality of resting state networks is associated with acute exam and outcomes. Total lack of brain network detection was only found in patients who did not survive.


Brain Injuries , Consciousness , Brain/diagnostic imaging , Child , Female , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging/methods , Male , Retrospective Studies , Seizures
14.
Front Neuroimaging ; 1: 1007668, 2022.
Article En | MEDLINE | ID: mdl-37555141

Objective: Accurate localization of a seizure onset zone (SOZ) from independent components (IC) of resting-state functional magnetic resonance imaging (rs-fMRI) improves surgical outcomes in children with drug-resistant epilepsy (DRE). Automated IC sorting has limited success in identifying SOZ localizing ICs in adult normal rs-fMRI or uncategorized epilepsy. Children face unique challenges due to the developing brain and its associated surgical risks. This study proposes a novel SOZ localization algorithm (EPIK) for children with DRE. Methods: EPIK is developed in a phased approach, where fMRI noise-related biomarkers are used through high-fidelity image processing techniques to eliminate noise ICs. Then, the SOZ markers are used through a maximum likelihood-based classifier to determine SOZ localizing ICs. The performance of EPIK was evaluated on a unique pediatric DRE dataset (n = 52). A total of 24 children underwent surgical resection or ablation of an rs-fMRI identified SOZ, concurrently evaluated with an EEG and anatomical MRI. Two state-of-art techniques were used for comparison: (a) least squares support-vector machine and (b) convolutional neural networks. The performance was benchmarked against expert IC sorting and Engel outcomes for surgical SOZ resection or ablation. The analysis was stratified across age and sex. Results: EPIK outperformed state-of-art techniques for SOZ localizing IC identification with a mean accuracy of 84.7% (4% higher), a precision of 74.1% (22% higher), a specificity of 81.9% (3.2% higher), and a sensitivity of 88.6% (16.5% higher). EPIK showed consistent performance across age and sex with the best performance in those < 5 years of age. It helped achieve a ~5-fold reduction in the number of ICs to be potentially analyzed during pre-surgical screening. Significance: Automated SOZ localization from rs-fMRI, validated against surgical outcomes, indicates the potential for clinical feasibility. It eliminates the need for expert sorting, outperforms prior automated methods, and is consistent across age and sex.

15.
J Clin Neurophysiol ; 39(7): 610-615, 2022 Nov 01.
Article En | MEDLINE | ID: mdl-33417384

OBJECTIVE: Regional differences were investigated in quantitative EEG (QEEG) characteristics and associations of QEEG to hemodynamics after pediatric acute stroke. METHODS: Quantitative EEG was analyzed, including power in delta, theta, alpha, and beta bands, alpha-delta power ratio, total power, and spectral edge frequency from 11 children with unilateral, anterior circulation strokes during the first 24 hours of continuous EEG recording. Differences between injured and uninjured hemispheres were assessed using multivariate dynamic structural equations modeling. Dynamic structural equations modeling was applied to six children with hemorrhagic stroke undergoing arterial blood pressure, heart rate, and cerebral oximetry monitoring to investigate associations between hemodynamics with QEEG adjacent to anterior circulation regions. RESULTS: All patients with acute ischemic stroke ( n = 5) had lower alpha and beta power and spectral edge frequency on injured compared with uninjured regions. This was not consistent after hemorrhagic stroke ( n = 6). All hemorrhagic stroke patients demonstrated negative association of total power with arterial blood pressure within injured regions. No consistency was observed for direction or strength of association in other QEEG measures to arterial blood pressure nor were such consistent relationships observed for any QEEG measure studied in relation to heart rate or cerebral oximetry. CONCLUSIONS: After pediatric anterior circulation acute ischemic stroke, reduced spectral edge frequency and alpha and beta power can be observed on injured as compared with noninjured regions. After pediatric anterior circulation hemorrhagic stroke, total power can be negatively associated with arterial blood pressure within injured regions. Larger studies are needed to understand conditions in which QEEG patterns manifest and relate to hemodynamics and brain penumbra.


Hemorrhagic Stroke , Ischemic Stroke , Stroke , Humans , Child , Cerebrovascular Circulation , Oximetry , Electroencephalography
16.
J Pers Med ; 11(10)2021 Sep 28.
Article En | MEDLINE | ID: mdl-34683111

Resting-state functional magnetic resonance imaging provides dynamic insight into the functional organization of the brains' intrinsic activity at rest. The emergence of resting-state functional magnetic resonance imaging in both the clinical and research settings may be attributed to recent advancements in statistical techniques, non-invasiveness and enhanced spatiotemporal resolution compared to other neuroimaging modalities, and the capability to identify and characterize deep brain structures and networks. In this report we describe a 16-year-old female patient with autism spectrum disorder who underwent resting-state functional magnetic resonance imaging due to late regression. Imaging revealed deactivated networks in deep brain structures involved in monoamine synthesis. Monoamine neurotransmitter deficits were confirmed by cerebrospinal fluid analysis. This case suggests that resting-state functional magnetic resonance imaging may have clinical utility as a non-invasive biomarker of central nervous system neurochemical alterations by measuring the function of neurotransmitter-driven networks. Use of this technology can accelerate and increase the accuracy of selecting appropriate therapeutic agents for patients with neurological and neurodevelopmental disorders.

17.
J Pers Med ; 11(9)2021 Aug 28.
Article En | MEDLINE | ID: mdl-34575631

Resting-state functional magnetic resonance imaging (rs-fMRI) has the potential to investigate abnormalities in brain network structure and connectivity on an individual level in neurodevelopmental disorders, such as autism spectrum disorder (ASD), paving the way toward using this technology for a personalized, precision medicine approach to diagnosis and treatment. Using a case-control design, we compared five patients with severe regressive-type ASD to five patients with temporal lobe epilepsy (TLE) to examine the association between brain network characteristics and diagnosis. All children with ASD and TLE demonstrated intact motor, language, and frontoparietal (FP) networks. However, aberrant networks not usually seen in the typical brain were also found. These aberrant networks were located in the motor (40%), language (80%), and FP (100%) regions in children with ASD, while children with TLE only presented with aberrant networks in the motor (40%) and language (20%) regions, in addition to identified seizure onset zones. Fisher's exact test indicated a significant relationship between aberrant FP networks and diagnosis (p = 0.008), with ASD and atypical FP networks co-occurring more frequently than expected by chance. Despite severe cognitive delays, children with regressive-type ASD may demonstrate intact typical cortical network activation despite an inability to use these cognitive facilities. The functions of these intact cognitive networks may not be fully expressed, potentially because aberrant networks interfere with their long-range signaling, thus creating a unique "locked-in network" syndrome.

18.
J Neurosurg Pediatr ; : 1-8, 2020 Mar 20.
Article En | MEDLINE | ID: mdl-32197251

OBJECTIVE: The authors' goal was to prospectively quantify the impact of resting-state functional MRI (rs-fMRI) on pediatric epilepsy surgery planning. METHODS: Fifty-one consecutive patients (3 months to 20 years old) with intractable epilepsy underwent rs-fMRI for presurgical evaluation. The team reviewed the following available diagnostic data: video-electroencephalography (n = 51), structural MRI (n = 51), FDG-PET (n = 42), magnetoencephalography (n = 5), and neuropsychological testing (n = 51) results to formulate an initial surgery plan blinded to the rs-fMRI findings. Subsequent to this discussion, the connectivity results were revealed and final recommendations were established. Changes between pre- and post-rs-fMRI treatment plans were determined, and changes in surgery recommendation were compared using McNemar's test. RESULTS: Resting-state fMRI was successfully performed in 50 (98%) of 51 cases and changed the seizure onset zone localization in 44 (88%) of 50 patients. The connectivity results prompted 6 additional studies, eliminated the ordering of 11 further diagnostic studies, and changed the intracranial monitoring plan in 10 cases. The connectivity results significantly altered surgery planning with the addition of 13 surgeries, but it did not eliminate planned surgeries (p = 0.003). Among the 38 epilepsy surgeries performed, the final surgical approach changed due to rs-fMRI findings in 22 cases (58%), including 8 (28%) of 29 in which extraoperative direct electrical stimulation mapping was averted. CONCLUSIONS: This study demonstrates the impact of rs-fMRI connectivity results on the decision-making for pediatric epilepsy surgery by providing new information about the location of eloquent cortex and the seizure onset zone. Additionally, connectivity results may increase the proportion of patients considered eligible for surgery while optimizing the need for further testing.

20.
Ann Neurol ; 86(3): 344-356, 2019 09.
Article En | MEDLINE | ID: mdl-31294865

OBJECTIVE: Postoperative resting-state functional magnetic resonance imaging (MRI) in children with intractable epilepsy has not been quantified in relation to seizure outcome. Therefore, its value as a biomarker for epileptogenic pathology is not well understood. METHODS: In a sample of children with intractable epilepsy who underwent prospective resting-state seizure onset zone (SOZ)-targeted epilepsy surgery, postoperative resting-state functional MRI (rs-fMRI) was performed 6 to 12 months later. Graded normalization of the postoperative resting-state SOZ was compared to seizure outcomes, patient, surgery, and anatomical MRI characteristics. RESULTS: A total of 64 cases were evaluated. Network-targeted surgery, followed by postoperative rs-fMRI normalization was significantly (p < 0.001) correlated with seizure reduction, with a Spearman rank correlation coefficient of 0.83. Of 39 cases with postoperative rs-fMRI SOZ normalization, 38 (97%) became completely seizure free. In contrast, of the 25 cases without complete rs-fMRI SOZ normalization, only 3 (5%) became seizure free. The accuracy of rs-fMRI as a biomarker predicting seizure freedom is 94%, with 96% sensitivity and 93% specificity. INTERPRETATION: Among seizure localization techniques in pediatric epilepsy, network-targeted surgery, followed by postoperative rs-fMRI normalization, has high correlation with seizure freedom. This study shows that rs-fMRI SOZ can be used as a biomarker of the epileptogenic zone, and postoperative rs-fMRI normalization is a biomarker for SOZ quiescence. ANN NEUROL 2019;86:344-356.


Drug Resistant Epilepsy/physiopathology , Neural Pathways/physiopathology , Seizures/physiopathology , Brain/physiopathology , Child , Drug Resistant Epilepsy/complications , Drug Resistant Epilepsy/surgery , Female , Humans , Magnetic Resonance Imaging , Male , Postoperative Period , Predictive Value of Tests , Prospective Studies , Rest , Seizures/complications , Seizures/surgery , Sensitivity and Specificity , Single-Blind Method
...