Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1418333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149205

RESUMEN

Introduction: Listeria monocytogenes is an ubiquitous foodborne pathogen that represents a serious threat to public health and the food industry. Methods: In this study Whole Genome Sequencing (WGS) was used to characterize 160 L. monocytogenes isolates obtained from 22,593 different food sources in Montenegro during the years 2014-2022. Results: Isolates belonged to 21 different clonal complexes (CCs), 22 sequence types (STs) and 73 core genome multilocus sequence types (cgMLST) revealing a high diversity. The most prevalent STs were ST8 (n = 29), ST9 (n = 31), ST121 (n = 19) and ST155 (n = 20). All isolates carried virulence genes (VGs), 111 isolates carried mobile genetic elements (MGEs) (ranging from 1 to 7 MGEs) and 101 isolates carried plasmids (ranging from 1 to 3 plasmids). All isolates carried the intrinsic resistance genes fosX and lin. None of the isolates carried acquired antimicrobial resistance genes (ARGs). Discussion/conclusion: Continuous monitoring and surveillance of L. monocytogenes is needed for improving and ameliorating the public health.

2.
Parasit Vectors ; 17(1): 45, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297327

RESUMEN

Ixodid ticks are distributed across all countries of the Western Balkans, with a high diversity of species. Many of these species serve as vectors of pathogens of veterinary and medical importance. Given the scattered data from Western Balkan countries, we have conducted a comprehensive review of available literature, including some historical data, with the aim to compile information about all recorded tick species and associated zoonotic pathogens in this region. Based on the collected data, the tick fauna of the Western Balkans encompasses 32 tick species belonging to five genera: Ixodes, Haemaphysalis, Dermacentor, Rhipicephalus and Hyalomma. A range of pathogens responsible for human diseases has also been documented, including viruses, bacteria and parasites. In this review, we emphasize the necessity for integrated surveillance and reporting, urging authorities to foster research by providing financial support. Additionally, international and interdisciplinary collaborations should be encouraged that include the exchange of expertise, experiences and resources. The present collaborative effort can effectively address gaps in our knowledge of ticks and tick-borne diseases.


Asunto(s)
Borrelia , Ixodes , Ixodidae , Enfermedades por Picaduras de Garrapatas , Animales , Humanos , Peninsula Balcánica , Ixodidae/microbiología , Ixodes/microbiología , Enfermedades por Picaduras de Garrapatas/veterinaria
3.
Glob Chang Biol ; 28(7): 2425-2441, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34908205

RESUMEN

Depolymerization of high-molecular weight organic nitrogen (N) represents the major bottleneck of soil N cycling and yet is poorly understood compared to the subsequent inorganic N processes. Given the importance of organic N cycling and the rise of global change, we investigated the responses of soil protein depolymerization and microbial amino acid consumption to increased temperature, elevated atmospheric CO2 , and drought. The study was conducted in a global change facility in a managed montane grassland in Austria, where elevated CO2 (eCO2 ) and elevated temperature (eT) were stimulated for 4 years, and were combined with a drought event. Gross protein depolymerization and microbial amino acid consumption rates (alongside with gross organic N mineralization and nitrification) were measured using 15 N isotope pool dilution techniques. Whereas eCO2  showed no individual effect, eT had distinct effects which were modulated by season, with a negative effect of eT on soil organic N process rates in spring, neutral effects in summer, and positive effects in fall. We attribute this to a combination of changes in substrate availability and seasonal temperature changes. Drought led to a doubling of organic N process rates, which returned to rates found under ambient conditions within 3 months after rewetting. Notably, we observed a shift in the control of soil protein depolymerization, from plant substrate controls under continuous environmental change drivers (eT and eCO2 ) to controls via microbial turnover and soil organic N availability under the pulse disturbance (drought). To the best of our knowledge, this is the first study which analyzed the individual versus combined effects of multiple global change factors and of seasonality on soil organic N processes and thereby strongly contributes to our understanding of terrestrial N cycling in a future world.


Asunto(s)
Sequías , Pradera , Aminoácidos , Dióxido de Carbono/análisis , Ecosistema , Nitrógeno/análisis , Suelo/química , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA