Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
2.
J Cancer Educ ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499846

RESUMEN

The National Cancer Institute (NCI) K99/R00 award is intended to help postdoctoral scholars transition in a timely manner to research independence and to foster their development of an impactful cancer research program that is competitive for subsequent independent funding. Here we analyzed factors that impact peer review outcomes and evaluated whether NCI K99/R00 awardees have achieved the goals of the K99/R00 funding mechanism. Our analysis of the K99/R00 review criterion scores demonstrates that while all review criterion scores are positively correlated with the overall impact score, the Research Plan criterion is the strongest predictor of the overall impact score and funding outcomes. In addition, our analysis shows the NCI K99/R00 award facilitated the successful transition of postdoctoral scholars to research independence and enhanced the likelihood of K99/R00 awardees to secure subsequent R01-equivalent NIH grant support although not in an accelerated fashion as originally intended. An NCI K99/R00 award was not determined to be a prerequisite to obtain a faculty position, but for some awardees, it was an asset in that transition. Our results suggest that the NCI K99/R00 award is an important component for training and retention of the next generation of independent cancer researchers and to increasing the percentage of women and promoting the diversity of the cancer research workforce.

3.
Cancers (Basel) ; 15(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36900358

RESUMEN

Malignant glioma is the most common and deadly brain tumor. A marked reduction in the levels of sGC (soluble guanylyl cyclase) transcript in the human glioma specimens has been revealed in our previous studies. In the present study, restoring the expression of sGCß1 alone repressed the aggressive course of glioma. The antitumor effect of sGCß1 was not associated with enzymatic activity of sGC since overexpression of sGCß1 alone did not influence the level of cyclic GMP. Additionally, sGCß1-induced inhibition of the growth of glioma cells was not influenced by treatment with sGC stimulators or inhibitors. The present study is the first to reveal that sGCß1 migrated into the nucleus and interacted with the promoter of the TP53 gene. Transcriptional responses induced by sGCß1 caused the G0 cell cycle arrest of glioblastoma cells and inhibition of tumor aggressiveness. sGCß1 overexpression impacted signaling in glioblastoma multiforme, including the promotion of nuclear accumulation of p53, a marked reduction in CDK6, and a significant decrease in integrin α6. These anticancer targets of sGCß1 may represent clinically important regulatory pathways that contribute to the development of a therapeutic strategy for cancer treatment.

4.
J Cancer Educ ; 36(Suppl 1): 25-38, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34292501

RESUMEN

Solving health problems requires not only the development of new medical knowledge but also its dissemination, particularly to underserved communities. The barriers to effective dissemination also contribute to the disparities in cancer care experienced most everywhere. This concern is particularly acute in low and middle-income countries which already bear a disproportionate burden of cancer, a situation that is projected to worsen. Project ECHO (Extension for Community Healthcare Outcomes) is a knowledge dissemination platform that can increase workforce capacity across many fields, including cancer care by scaling best practices. Here we describe how Project ECHO works and illustrate this with existing programs that span the cancer care continuum and the globe. The examples provided combined with the explanation of how to build effective Project ECHO communities provide an accessible guide on how this education strategy can be integrated into existing work to help respond to the challenge of cancer.


Asunto(s)
Servicios de Salud Comunitaria , Neoplasias , Humanos
5.
J Cancer Educ ; 36(Suppl 1): 5-24, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34273100

RESUMEN

Cancer incidence and mortality are increasing in low- and middle-income countries (LMICs), where more than 75% of global cancer burden will occur by the year 2040. The primary drivers of cancer morbidity and mortality in LMICs are environmental and behavioral risk factors, inadequate prevention and early detection services, presence of comorbidities, and poor access to treatment and palliation. These same drivers also contribute to marked cancer health disparities in high-income countries. Studying cancer in LMICs provides opportunities to better understand and address these drivers to benefit populations worldwide, and reflecting this, global oncology as an academic discipline has grown substantially in recent years. However, sustaining this growth requires a uniquely trained workforce with the skills to pursue relevant, rigorous, and equitable global oncology research. Despite this need, dedicated global cancer research training programs remain somewhat nascent and uncoordinated. In this paper, we discuss efforts to address these gaps in global cancer research training at the US National Institutes of Health.


Asunto(s)
Creación de Capacidad , Neoplasias , Países en Desarrollo , Salud Global , Humanos , Renta , Oncología Médica , Neoplasias/prevención & control , Pobreza
6.
NPJ Breast Cancer ; 7(1): 98, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34312396

RESUMEN

Male breast cancer (BCa) is a rare disease accounting for less than 1% of all breast cancers and 1% of all cancers in males. The clinical management is largely extrapolated from female BCa. Several multigene assays are increasingly used to guide clinical treatment decisions in female BCa, however, there are limited data on the utility of these tests in male BCa. Here we present the gene expression results of 381 M0, ER+ve, HER2-ve male BCa patients enrolled in the Part 1 (retrospective analysis) of the International Male Breast Cancer Program. Using a custom NanoString™ panel comprised of the genes from the commercial risk tests Prosigna®, OncotypeDX®, and MammaPrint®, risk scores and intrinsic subtyping data were generated to recapitulate the commercial tests as described by us previously. We also examined the prognostic value of other risk scores such as the Genomic Grade Index (GGI), IHC4-mRNA and our prognostic 95-gene signature. In this sample set of male BCa, we demonstrated prognostic utility on univariate analysis. Across all signatures, patients whose samples were identified as low-risk experienced better outcomes than intermediate-risk, with those classed as high risk experiencing the poorest outcomes. As seen with female BCa, the concordance between tests was poor, with C-index values ranging from 40.3% to 78.2% and Kappa values ranging from 0.17 to 0.58. To our knowledge, this is the largest study of male breast cancers assayed to generate risk scores of the current commercial and academic risk tests demonstrating comparable clinical utility to female BCa.

7.
Genes Cancer ; 10(5-6): 109-118, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798764

RESUMEN

Dr. John Mendelsohn is credited for the concept of targeting the epidermal growth factor receptor (EGFR), providing the first evidence of anticancer activity of antagonist anti-EGFR mAb, and developing the Erbitux (Cetuximab) drug for cancer patients. During his professional journey, Dr. Mendelsohn also helped to build and elevate the status of three cancer cancers, all while touching the lives of cancer patients around the globe. He was a towering figure, and his passing in January 2019 casts a very long shadow over the entire field of cancer research and treatment. Although no one person can ever adequately fill John Mendelsohn's very large shoes, we can all learn by his remarkable example. Here we discuss Dr. Mendelsohn's professional life to spotlight his influence on oncology and also share personal reflections from us and several colleagues: Tony Hunter, Robert A. Weinberg, Robert C. Bast, Raymond Sawaya, David M. Gershenson, Christopher J Logothetis, Stanley R. Hamilton, Mien-Chie Hung, and George M. Stancel. See related article Kumar et al. Can Res 2019; 79:4315-4323.

8.
J Glob Oncol ; 5: 1-9, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30629457

RESUMEN

PURPOSE: The purpose of this study was to validate a fully automatic treatment planning system for conventional radiotherapy of cervical cancer. This system was developed to mitigate staff shortages in low-resource clinics. METHODS: In collaboration with hospitals in South Africa and the United States, we have developed the Radiation Planning Assistant (RPA), which includes algorithms for automating every step of planning: delineating the body contour, detecting the marked isocenter, designing the treatment-beam apertures, and optimizing the beam weights to minimize dose heterogeneity. First, we validated the RPA retrospectively on 150 planning computed tomography (CT) scans. We then tested it remotely on 14 planning CT scans at two South African hospitals. Finally, automatically planned treatment beams were clinically deployed at our institution. RESULTS: The automatically and manually delineated body contours agreed well (median mean surface distance, 0.6 mm; range, 0.4 to 1.9 mm). The automatically and manually detected marked isocenters agreed well (mean difference, 1.1 mm; range, 0.1 to 2.9 mm). In validating the automatically designed beam apertures, two physicians, one from our institution and one from a South African partner institution, rated 91% and 88% of plans acceptable for treatment, respectively. The use of automatically optimized beam weights reduced the maximum dose significantly (median, -1.9%; P < .001). Of the 14 plans from South Africa, 100% were rated clinically acceptable. Automatically planned treatment beams have been used for 24 patients with cervical cancer by physicians at our institution, with edits as needed, and its use is ongoing. CONCLUSION: We found that fully automatic treatment planning is effective for cervical cancer radiotherapy and may provide a reliable option for low-resource clinics. Prospective studies are ongoing in the United States and are planned with partner clinics.


Asunto(s)
Órganos en Riesgo/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias del Cuello Uterino/radioterapia , Algoritmos , Automatización , Femenino , Humanos , Órganos en Riesgo/diagnóstico por imagen , Estudios Prospectivos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/patología
9.
J Vis Exp ; (134)2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29708544

RESUMEN

The Radiation Planning Assistant (RPA) is a system developed for the fully automated creation of radiotherapy treatment plans, including volume-modulated arc therapy (VMAT) plans for patients with head/neck cancer and 4-field box plans for patients with cervical cancer. It is a combination of specially developed in-house software that uses an application programming interface to communicate with a commercial radiotherapy treatment planning system. It also interfaces with a commercial secondary dose verification software. The necessary inputs to the system are a Treatment Plan Order, approved by the radiation oncologist, and a simulation computed tomography (CT) image, approved by the radiographer. The RPA then generates a complete radiotherapy treatment plan. For the cervical cancer treatment plans, no additional user intervention is necessary until the plan is complete. For head/neck treatment plans, after the normal tissue and some of the target structures are automatically delineated on the CT image, the radiation oncologist must review the contours, making edits if necessary. They also delineate the gross tumor volume. The RPA then completes the treatment planning process, creating a VMAT plan. Finally, the completed plan must be reviewed by qualified clinical staff.


Asunto(s)
Dosificación Radioterapéutica/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos
10.
Cancer Cell ; 31(4): 591-606.e6, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28344040

RESUMEN

The dynamic and reversible N6-methyladenosine (m6A) RNA modification installed and erased by N6-methyltransferases and demethylases regulates gene expression and cell fate. We show that the m6A demethylase ALKBH5 is highly expressed in glioblastoma stem-like cells (GSCs). Silencing ALKBH5 suppresses the proliferation of patient-derived GSCs. Integrated transcriptome and m6A-seq analyses revealed altered expression of certain ALKBH5 target genes, including the transcription factor FOXM1. ALKBH5 demethylates FOXM1 nascent transcripts, leading to enhanced FOXM1 expression. Furthermore, a long non-coding RNA antisense to FOXM1 (FOXM1-AS) promotes the interaction of ALKBH5 with FOXM1 nascent transcripts. Depleting ALKBH5 and FOXM1-AS disrupted GSC tumorigenesis through the FOXM1 axis. Our work uncovers a critical function for ALKBH5 and provides insight into critical roles of m6A methylation in glioblastoma.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Neoplasias Encefálicas/patología , Proteína Forkhead Box M1/metabolismo , Glioblastoma/patología , Regiones no Traducidas 3' , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Proliferación Celular , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Proteína Forkhead Box M1/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/mortalidad , Masculino , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Transl Med ; 14: 46, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26861698

RESUMEN

BACKGROUND: The majority of glioblastomas have aberrant receptor tyrosine kinase (RTK)/RAS/phosphoinositide 3 kinase (PI3K) signaling pathways and malignant glioma cells are thought to be addicted to these signaling pathways for their survival and proliferation. However, recent studies suggest that monotherapies or inappropriate combination therapies using the molecular targeted drugs have limited efficacy possibly because of tumor heterogeneities, signaling redundancy and crosstalk in intracellular signaling network, indicating necessity of rationale and methods for efficient personalized combination treatments. Here, we evaluated the growth of colonies obtained from glioma tumor-initiating cells (GICs) derived from glioma sphere culture (GSC) in agarose and examined the effects of combination treatments on GICs using targeted drugs that affect the signaling pathways to which most glioma cells are addicted. METHODS: Human GICs were cultured in agarose and treated with inhibitors of RTKs, non-receptor kinases or transcription factors. The colony number and volume were analyzed using a colony counter, and Chou-Talalay combination indices were evaluated. Autophagy and apoptosis were also analyzed. Phosphorylation of proteins was evaluated by reverse phase protein array and immunoblotting. RESULTS: Increases of colony number and volume in agarose correlated with the Gompertz function. GICs showed diverse drug sensitivity, but inhibitions of RTK and RAF/MEK or PI3K by combinations such as EGFR inhibitor and MEK inhibitor, sorafenib and U0126, erlotinib and BKM120, and EGFR inhibitor and sorafenib showed synergy in different subtypes of GICs. Combination of erlotinib and sorafenib, synergistic in GSC11, induced apoptosis and autophagic cell death associated with suppressed Akt and ERK signaling pathways and decreased nuclear PKM2 and ß-catenin in vitro, and tended to improve survival of nude mice bearing GSC11 brain tumor. Reverse phase protein array analysis of the synergistic treatment indicated involvement of not only MEK and PI3K signaling pathways but also others associated with glucose metabolism, fatty acid metabolism, gene transcription, histone methylation, iron transport, stress response, cell cycle, and apoptosis. CONCLUSION: Inhibiting RTK and RAF/MEK or PI3K could induce synergistic cytotoxicity but personalization is necessary. Examining colonies in agarose initiated by GICs from each patient may be useful for drug sensitivity testing in personalized cancer therapy.


Asunto(s)
Glioma/tratamiento farmacológico , Glioma/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Células Madre Neoplásicas/patología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasas raf/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Concentración 50 Inhibidora , Masculino , Ratones Desnudos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Quinasas raf/metabolismo
12.
J Biol Chem ; 290(18): 11749-61, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25795775

RESUMEN

The RET proto-oncogene, a tyrosine kinase receptor, is widely known for its essential role in cell survival. Germ line missense mutations, which give rise to constitutively active oncogenic RET, were found to cause multiple endocrine neoplasia type 2, a dominant inherited cancer syndrome that affects neuroendocrine organs. However, the mechanisms by which RET promotes cell survival and prevents cell death remain elusive. We demonstrate that in addition to cytoplasmic localization, RET is localized in the nucleus and functions as a tyrosine-threonine dual specificity kinase. Knockdown of RET by shRNA in medullary thyroid cancer-derived cells stimulated expression of activating transcription factor 4 (ATF4), a master transcription factor for stress-induced apoptosis, through activation of its target proapoptotic genes NOXA and PUMA. RET knockdown also increased sensitivity to cisplatin-induced apoptosis. We observed that RET physically interacted with and phosphorylated ATF4 at tyrosine and threonine residues. Indeed, RET kinase activity was required to inhibit the ATF4-dependent activation of the NOXA gene because the site-specific substitution mutations that block threonine phosphorylation increased ATF4 stability and activated its targets NOXA and PUMA. Moreover, chromatin immunoprecipitation assays revealed that ATF4 occupancy increased at the NOXA promoter in TT cells treated with tyrosine kinase inhibitors or the ATF4 inducer eeyarestatin as well as in RET-depleted TT cells. Together these findings reveal RET as a novel dual kinase with nuclear localization and provide mechanisms by which RET represses the proapoptotic genes through direct interaction with and phosphorylation-dependent inactivation of ATF4 during the pathogenesis of medullary thyroid cancer.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Apoptosis , Proteínas Proto-Oncogénicas c-ret/metabolismo , Factor de Transcripción Activador 4/química , Transporte Activo de Núcleo Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Cisplatino/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis/efectos de los fármacos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Treonina/metabolismo , Transcripción Genética/efectos de los fármacos
13.
Cancer Res Treat ; 47(2): 221-41, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25410762

RESUMEN

PURPOSE: Radiation-induced autophagy has been shown to play two different roles, in malignant glioma (MG) cells, cytocidal or cytoprotective. However, neither the role of radiation-induced autophagy for cell death nor the existence of autophagy-induced apoptosis, a well-known cell-death pathway after irradiation, has been verified yet. MATERIALS AND METHODS: We observed both temporal and dose-dependent response patterns of autophagy and apoptosis to radiation in MG cell lines. Additionally, we investigated the role of autophagy in apoptosis through knockdown of autophagy-related proteins. RESULTS: Autophagic activity measured by staining of acidic vesicle organelles and Western blotting of LC-3 protein increased in proportion to radiation dose from day 1 to 5 after irradiation. Apoptosis measured by annexin-V staining and Western blotting of cleaved poly(ADP-ribose) polymerase demonstrated relatively late appearance 3 days after irradiation that increased for up to 7 days. Blocking of pan-caspase (Z-VAD-FMK) did not affect apoptosis after irradiation, but silencing of Atg5 effectively reduced radiation-induced autophagy, which decreased apoptosis significantly. Inhibition of autophagy in Atg5 knockdown cells was shown to be beneficial for cell survival. Stable transfection of GFP-LC3 cells was observed after irradiation. Annexin-V was localized in cells bearing GFP-LC3 punctuated spots, indicating autophagy in immunofluorescence. Some of these punctuated GFP-LC3 bearing cells formed conglomerated spots and died in final phase. CONCLUSION: These findings suggest that autophagy appears earlier than apoptosis after irradiation and that a portion of the apoptotic population that appears later is autophagy-dependent. Thus, autophagy is a pathway to cell death after irradiation of MG cells.

14.
Int J Cancer ; 136(9): 2047-54, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25302990

RESUMEN

Signal transducer and activator of transcription 5b (STAT5b) is likely the relevant STAT5 isoform with respect to the process of malignant progression in gliomas. STAT5b is a latent cytoplasmic protein involved in cell signaling through the modulation of growth factors, apoptosis, and angiogenesis. Previous in vitro studies have shown increased STAT5b expression in glioblastomas relative to low-grade tumors and normal brain. We recently demonstrated that phosphorylated STAT5b associates with delta epidermal growth factor receptor in the nucleus and subsequently binds the promoters of downstream effector molecules, including aurora kinase A. Analysis of TCGA dataset reveals that STAT5b is predominantly expressed in proneural (PN) gliomas relative to mesenchymal and neural gliomas. Here, we modeled ectopic expression of STAT5b in vivo using a platelet-derived growth factor subunit B (PDGFB)-dependent mouse model of PN glioma to determine its effect on tumor formation and progression. We showed that coexpression of STAT5b and PDGFB in mice yielded a significantly higher rate of high-grade gliomas than PDGFB expression alone. We also observed shorter survival in the combined expression set. High-grade tumors from the STAT5b + PDGFB expression set were found to have a lower rate of apoptosis than those from PDGFB alone. Furthermore, we showed that increased expression of STAT5b + PDGFB led to increased expression of downstream STAT5b targets, including Bcl-xL, cyclin D1 and aurora kinase A in high-grade tumors when compared to tumors derived from PDGFB alone. Our findings show that STAT5b promotes the malignant transformation of gliomas, particularly the PN subtype, and is a potential therapeutic target.


Asunto(s)
Apoptosis/genética , Glioma/genética , Glioma/metabolismo , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Proto-Oncogénicas c-sis/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Animales , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Ciclina D1/genética , Ciclina D1/metabolismo , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Glioma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos/genética , Ratones Transgénicos/metabolismo
15.
J Surg Oncol ; 110(4): 353-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24889208

RESUMEN

BACKGROUND: Despite the growing incidence of cancer worldwide, there are an insufficient number of primary care physicians, community oncologists, and surgeons to meet the demand for cancer care, especially in rural and other medically underserved areas. Teleoncology, including diagnostics, treatment, and supportive care, has the potential to enhance access to cancer care and to improve clinician education and training. OBJECTIVES: Major cancer centers such as The University of Texas MD Anderson Cancer Center must determine how teleoncology will be used as part of strategic planning for the future. The Telemedicine and Telesurgery in Cancer Care (TTCC) conference was convened to determine technologically based strategies for addressing global access to essential cancer care services. RESULTS: The TTCC conference brought policy makers together with physicians, legal and regulatory experts to define strategies to optimize available resources, including teleoncology, to advance global cancer care. CONCLUSIONS: The TTCC conference discourse provided insight into the present state of access to care, expertise, training, technology and other interventions, including teleoncology, currently available through MD Anderson, as well as a vision of what might be achievable in the future, and proposals for moving forward with a comprehensive strategy.


Asunto(s)
Oncología Médica , Neoplasias/cirugía , Telemedicina , Humanos , Telemedicina/economía , Telemedicina/legislación & jurisprudencia
16.
BMC Genomics ; 14: 505, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23885787

RESUMEN

BACKGROUND: Solid tumors present a panoply of genomic alterations, from single base changes to the gain or loss of entire chromosomes. Although aberrations at the two extremes of this spectrum are readily defined, comprehensive discernment of the complex and disperse mutational spectrum of cancer genomes remains a significant challenge for current genome analysis platforms. In this context, high throughput, single molecule platforms like Optical Mapping offer a unique perspective. RESULTS: Using measurements from large ensembles of individual DNA molecules, we have discovered genomic structural alterations in the solid tumor oligodendroglioma. Over a thousand structural variants were identified in each tumor sample, without any prior hypotheses, and often in genomic regions deemed intractable by other technologies. These findings were then validated by comprehensive comparisons to variants reported in external and internal databases, and by selected experimental corroborations. Alterations range in size from under 5 kb to hundreds of kilobases, and comprise insertions, deletions, inversions and compound events. Candidate mutations were scored at sub-genic resolution and unambiguously reveal structural details at aberrant loci. CONCLUSIONS: The Optical Mapping system provides a rich description of the complex genomes of solid tumors, including sequence level aberrations, structural alterations and copy number variants that power generation of functional hypotheses for oligodendroglioma genetics.


Asunto(s)
Genómica/métodos , Oligodendroglioma/genética , Mapeo Físico de Cromosoma/métodos , Adulto , Anciano , Secuencia de Bases , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 19/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Mutación , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados
17.
PLoS One ; 8(2): e55732, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23393598

RESUMEN

Cucurbitacin B (CuB) is one of the potential agents for long term anticancer chemoprevention. Cumulative evidences has shown that cucurbitacin B provides potent cellular biological activities such as hepatoprotective, anti-inflammatory and antimicrobial effects, but the precise mechanism of this agent is not clearly understood. We examine the biological effects on cancer cells of cucurbitacin B extracted from a Thai herb, Trichosanthes cucumerina L. The wild type (wt) BRCA1, mutant BRCA1, BRCA1 knocked-down and BRCA1 overexpressed breast cancer cells were treated with the cucurbitacin B and determined for the inhibitory effects on the cell proliferation, migration, invasion, anchorage-independent growth. The gene expressions in the treated cells were analyzed for p21/(Waf1), p27(Kip1) and survivin. Our previous study revealed that loss of BRCA1 expression leads to an increase in survivin expression, which is responsible for a reduction in sensitivity to paclitaxel. In this work, we showed that cucurbitacin B obviously inhibited knocked-down and mutant BRCA1 breast cancer cells rather than the wild type BRCA1 breast cancer cells in regards to the cellular proliferation, migration, invasion and anchorage-independent growth. Furthermore, forcing the cells to overexpress wild type BRCA1 significantly reduced effectiveness of cucurbitacin B on growth inhibition of the endogenous mutant BRCA1 cells. Interestingly, cucurbitacin B promotes the expression of p21/(Waf1) and p27(Kip1) but inhibit the expression of survivin. We suggest that survivin could be an important target of cucurbitacin B in BRCA1 defective breast cancer cells.


Asunto(s)
Proteína BRCA1/metabolismo , Neoplasias de la Mama/metabolismo , Triterpenos/farmacología , Western Blotting , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Humanos
18.
Neoplasia ; 15(1): 73-84, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23359207

RESUMEN

The hepatocyte growth factor receptor (c-Met) and a constitutively active mutant of the epidermal growth factor receptor (ΔEGFR/EGFRvIII) are frequently overexpressed in glioblastoma (GBM) and promote tumorigenesis. The mechanisms underlying elevated hepatocyte growth factor (HGF) production in GBM are not understood. We found higher, coordinated mRNA expression levels of HGF and c-Met in mesenchymal (Mes) GBMs, a subtype associated with poor treatment response and shorter overall survival. In an HGF/c-Met-dependent GBM cell line, HGF expression declined upon silencing of c-Met using RNAi or by inhibiting its activity with SU11274. Silencing c-Met decreased anchorage-independent colony formation and increased the survival of mice bearing intracranial GBM xenografts. Consistent with these findings, c-Met activation by ΔEGFR also elevated HGF expression, and the inhibition of ΔEGFR with AG1478 reduced HGF levels. Interestingly, c-Met expression was required for ΔEGFR-mediated HGF production, anchorage-independent growth, and in vivo tumorigenicity, suggesting that these pathways are coupled. Using an unbiased mass spectrometry-based screen, we show that signal transducer and activator of transcription 3 (STAT3) Y705 is a downstream target of c-Met signaling. Suppression of STAT3 phosphorylation with WP1193 reduced HGF expression in ΔEGFR-expressing GBM cells, whereas constitutively active STAT3 partially rescued HGF expression and colony formation in c-Met knockdown cells expressing ΔEGFR. These results suggest that the c-Met/HGF signaling axis is enhanced by ΔEGFR through increased STAT3-dependent HGF expression and that targeting c-Met in Mes GBMs may be an important strategy for therapy.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Factor de Crecimiento de Hepatocito/biosíntesis , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Cianoacrilatos/metabolismo , Receptores ErbB/genética , Glioblastoma/genética , Glioblastoma/patología , Células HEK293 , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Ratones , Ratones Desnudos , Fosforilación/genética , Proteínas Proto-Oncogénicas c-met/genética , Piridinas/metabolismo , Interferencia de ARN , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Células Tumorales Cultivadas
19.
Int J Cancer ; 132(3): 509-20, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22729867

RESUMEN

Aberrant EGFR signaling strongly promotes glioma malignancy and treatment resistance. The most prevalent mutation, ΔEGFR/EGFRvIII, is an in-frame deletion of the extracellular domain, which occurs in more than 25% of glioblastomas and enhances growth and survival of tumor cells. Paradoxically, the signaling of the potent oncogene ΔEGFR is of low intensity, raising the question of whether it exhibits preferential signaling to key downstream targets. We have observed levels of phosphorylation of STAT5 at position Y699 in cells expressing ΔEGFR that are similar or higher than in cells that overexpress EGFR and are acutely stimulated with EGF, prompting us to investigate the role of STAT5 activation in glioblastoma. Here, we show that in human glioblastoma samples, pSTAT5 levels correlated positively with EGFR expression and were associated with reduced survival. Interestingly, the activation of STAT5b downstream of ΔEGFR was dependent on SFKs, while the signal from acutely EGF-stimulated EGFR to STAT5b involved other kinases. Phosphorylated STAT5b and ΔEGFR associated in the nucleus, bound DNA and were found on promoters known to be regulated by STAT5 including that of the Aurora A gene. ΔEGFR cooperated with STAT5b to regulate the Bcl-XL promoter and knockdown of STAT5b suppressed anchorage independent growth, reduced the levels of Bcl-XL and sensitized glioblastoma cells to cisplatin. Together these results delineate a novel association of nuclear ΔEGFR with STAT5b, which promotes oncogenesis and treatment resistance in glioblastoma by direct regulation of anti-apoptotic gene, Bcl-XL.


Asunto(s)
Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Factor de Transcripción STAT5/metabolismo , Proteína bcl-X/genética , Animales , Apoptosis/genética , Aurora Quinasa A , Aurora Quinasas , Línea Celular Tumoral , Núcleo Celular/metabolismo , Supervivencia Celular , Cisplatino/farmacología , Glioblastoma/genética , Humanos , Ratones , Fosforilación , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño , Factor de Transcripción STAT5/genética , Eliminación de Secuencia , Transducción de Señal/genética , Familia-src Quinasas/metabolismo
20.
J Biol Chem ; 288(5): 3428-38, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23250739

RESUMEN

ΔEGFR is a potent glioblastoma oncogene which has been studied primarily as a plasma membrane kinase. Using intracranial xenograft studies in mice, we show that blocking ΔEGFR access to the nucleus attenuates its tumorigenicity and, conversely, that promoting nuclear accumulation enhances this, providing the first in vivo evidence that the nuclear actions of ΔEGFR contribute strongly to its oncogenic function. Nuclear actions of ΔEGFR include regulation of gene expression by participation in chromatin-bound complexes, and genome-wide mapping of these sequences by chromatin immunoprecipitation and massively parallel sequencing identified 2294 peaks. Bioinformatic analysis showed enrichment of the E-box motif in the dataset, and c-Myc and ΔEGFR were corecruited to the promoters of and transcriptionally activated a subset of nuclear ΔEGFR chromatin targets. Knockdown of c-Myc decreased the expression of these targets and diminished ΔEGFR-stimulated anchorage-independent colony formation. We conclude that transcriptional regulation of target genes by association with gene regulatory chromatin in cooperation with c-Myc by nuclear ΔEGFR makes a unique contribution to its oncogenicity and propose that this venue provides new targets for therapeutic intervention.


Asunto(s)
Núcleo Celular/metabolismo , Transformación Celular Neoplásica/metabolismo , Receptores ErbB/metabolismo , Mutación/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Transformación Celular Neoplásica/patología , Inmunoprecipitación de Cromatina , Elementos E-Box/genética , Receptores ErbB/química , Genoma Humano/genética , Glioma/metabolismo , Humanos , Ratones , Ratones Desnudos , Proteínas Mutantes/metabolismo , Señales de Exportación Nuclear , Señales de Localización Nuclear/metabolismo , Fenotipo , Regiones Promotoras Genéticas/genética , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...