Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 3689, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140486

RESUMEN

Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging.


Asunto(s)
Interfaces Cerebro-Computador , Calcio/metabolismo , Dendritas/fisiología , Microscopía Intravital/instrumentación , Microscopía Intravital/métodos , Corteza Motora/diagnóstico por imagen , Imagen Multimodal/métodos , Animales , Proteínas de Unión al Calcio/metabolismo , Dendritas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Implantes Experimentales , Macaca mulatta , Masculino , Modelos Neurológicos , Actividad Motora/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Fotones
3.
J Gen Physiol ; 149(5): 547-560, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28416647

RESUMEN

The ability of macromolecules to transduce stimulus information at one site into conformational changes at a distant site, termed "allostery," is vital for cellular signaling. Here, we propose a link between the sensitivity of allosteric macromolecules to their underlying biophysical parameters, the interrelationships between these parameters, and macromolecular adaptability. We demonstrate that the parameters of a canonical model of the mSlo large-conductance Ca2+-activated K+ (BK) ion channel are non-identifiable with respect to the equilibrium open probability-voltage relationship, a common functional assay. We construct a reduced model with emergent parameters that are identifiable and expressed as combinations of the original mechanistic parameters. These emergent parameters indicate which coordinated changes in mechanistic parameters can leave assay output unchanged. We predict that these coordinated changes are used by allosteric macromolecules to adapt, and we demonstrate how this prediction can be tested experimentally. We show that these predicted parameter compensations are used in the first reported allosteric phenomena: the Bohr effect, by which hemoglobin adapts to varying pH.


Asunto(s)
Adaptación Fisiológica , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Modelos Teóricos , Regulación Alostérica , Sitio Alostérico , Animales , Humanos , Activación del Canal Iónico , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética
4.
Curr Biol ; 24(4): 372-84, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24508171

RESUMEN

BACKGROUND: The dynamic properties of microtubules depend on complex nanoscale structural rearrangements in their end regions. Members of the EB1 and XMAP215 protein families interact autonomously with microtubule ends. EB1 recruits several other proteins to growing microtubule ends and has seemingly antagonistic effects on microtubule dynamics: it induces catastrophes, and it increases growth velocity, as does the polymerase XMAP215. RESULTS: Using a combination of in vitro reconstitution, time-lapse fluorescence microscopy, and subpixel-precision image analysis and convolved model fitting, we have studied the effects of EB1 on conformational transitions in growing microtubule ends and on the time course of catastrophes. EB1 density distributions at growing microtubule ends reveal two consecutive conformational transitions in the microtubule end region, which have growth-velocity-independent kinetics. EB1 binds to the microtubule after the first and before the second conformational transition has occurred, positioning it several tens of nanometers behind XMAP215, which binds to the extreme microtubule end. EB1 binding accelerates conformational maturation in the microtubule, most likely by promoting lateral protofilament interactions and by accelerating reactions of the guanosine triphosphate (GTP) hydrolysis cycle. The microtubule maturation time is directly linked to the duration of a growth pause just before microtubule depolymerization, indicating an important role of the maturation time for the control of dynamic instability. CONCLUSIONS: These activities establish EB1 as a microtubule maturation factor and provide a mechanistic explanation for its effects on microtubule growth and catastrophe frequency, which cause microtubules to be more dynamic.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Unión Proteica , Conformación Proteica
5.
Cell ; 149(2): 371-82, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22500803

RESUMEN

Growing microtubule ends serve as transient binding platforms for essential proteins that regulate microtubule dynamics and their interactions with cellular substructures. End-binding proteins (EBs) autonomously recognize an extended region at growing microtubule ends with unknown structural characteristics and then recruit other factors to the dynamic end structure. Using cryo-electron microscopy, subnanometer single-particle reconstruction, and fluorescence imaging, we present a pseudoatomic model of how the calponin homology (CH) domain of the fission yeast EB Mal3 binds to the end regions of growing microtubules. The Mal3 CH domain bridges protofilaments except at the microtubule seam. By binding close to the exchangeable GTP-binding site, the CH domain is ideally positioned to sense the microtubule's nucleotide state. The same microtubule-end region is also a stabilizing structural cap protecting the microtubule from depolymerization. This insight supports a common structural link between two important biological phenomena, microtubule dynamic instability and end tracking.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Proteínas Asociadas a Microtúbulos/química , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/química , Alineación de Secuencia , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...