Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 12(1)2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212127

RESUMEN

BACKGROUND: Patients with advanced melanoma who progress after treatment with immune checkpoint-inhibitors (ICI) and BRAF-/MEK-inhibitors (if BRAF V600 mutated) have no remaining effective treatment options. The presence of CD1c (BDCA-1)+ and CD141 (BDCA-3)+ myeloid dendritic cells (myDC) in the tumor microenvironment correlates with pre-existing immune recognition and responsiveness to immune checkpoint blockade. The synthetic saponin-based immune adjuvant AS01B enhances adaptive immunity through the involvement of myDC. METHODS: In this first-in-human phase I clinical trial, patients with metastatic melanoma refractory to ICI and BRAF-/MEK inhibitors (when indicated) were recruited. Patients received an intravenous administration of low-dose nivolumab (10 mg, every 2 weeks) plus an intratumoral (IT) administration of 10 mg ipilimumab and 50 µg (0.5 mL) AS01B (every 2 weeks). All myDC, isolated from blood, were injected on day 2 into the same metastatic lesion. Tumor biopsies and blood samples were collected at baseline and repeatedly on treatment. Multiplex immunohistochemistry (mIHC) was performed on biopsy sections to characterize and quantify the IT and peritumoral immune cell composition. RESULTS: Study treatment was feasible and well tolerated without the occurrence of unexpected adverse events in all eight patients. Four patients (50%) obtained a complete response (CR) in the injected lesions. Of these, two patients obtained an overall CR, and one patient a partial response. All responses are ongoing after more than 1 year of follow-up. One additional patient had a stable disease as best response. The disease control rate was 50%. Median progression-free survival and overall survival were 24.1 and 41.9 weeks, respectively. Baseline tumor biopsies from patients who responded to treatment had features of T-cell exclusion. During treatment, there was an increased T-cell infiltration, with a reduced mean distance between T cells and tumor cells. Peripheral blood immune cell composition did not significantly change during study treatment. CONCLUSIONS: Combining an intratumoral injection of CD1c (BDCA-1)+ and CD141 (BDCA-3)+ myDC with repeated IT administration of ipilimumab and AS01B and systemic low-dose nivolumab is safe, feasible with promising early results, worthy of further clinical investigation. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov identifier NCT03707808.


Asunto(s)
Melanoma , Humanos , Melanoma/patología , Nivolumab/efectos adversos , Ipilimumab/farmacología , Ipilimumab/uso terapéutico , Adyuvantes Inmunológicos/efectos adversos , Proteínas Proto-Oncogénicas B-raf , Anticuerpos Monoclonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Administración Intravenosa , Quinasas de Proteína Quinasa Activadas por Mitógenos , Microambiente Tumoral
2.
Front Mol Biosci ; 8: 673042, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621785

RESUMEN

Our expanding knowledge of the interactions between tumor cells and their microenvironment has helped to revolutionize cancer treatments, including the more recent development of immunotherapies. Immune cells are an important component of the tumor microenvironment that influence progression and treatment responses, particularly to the new immunotherapies. Technological advances that help to decipher the complexity and diversity of the tumor immune microenvironment (TIME) are increasingly used in translational research and biomarker studies. Current techniques that facilitate TIME evaluation include flow cytometry, multiplex bead-based immunoassays, chromogenic immunohistochemistry (IHC), fluorescent multiplex IHC, immunofluorescence, and spatial transcriptomics. This article offers an overview of our representative data, discusses the application of each approach to studies of the TIME, including their advantages and challenges, and reviews the potential clinical applications. Flow cytometry and chromogenic and fluorescent multiplex IHC were used to immune profile a HER2+ breast cancer, illustrating some points. Spatial transcriptomic analysis of a luminal B breast tumor demonstrated that important additional insight can be gained from this new technique. Finally, the development of a multiplex panel to identify proliferating B cells, Tfh, and Tfr cells on the same tissue section demonstrates their co-localization in tertiary lymphoid structures.

3.
J Clin Invest ; 131(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34411002

RESUMEN

We previously demonstrated that tumor-infiltrating lymphocytes (TIL) in human breast cancer sometimes form organized tertiary lymphoid structures (TLS) characterized by CXCL13-producing T follicular helper (Tfh) cells. The present study found that CD4+ Tfh TIL, CD8+ TIL, and TIL-B, colocalizing in TLS, all express the CXCL13 receptor CXCR5. An ex vivo functional assay determined that only activated, functional Th1-oriented Tfh TIL (PD-1hiICOSint phenotype) provide help for immunoglobulin and IFN-γ production. A functional Tfh TIL presence signals an active TLS, characterized by humoral (immunoglobulins, Ki-67+ TIL-B in active germinal centers) and cytotoxic (GZMB+CD8+ and GZMB+CD68+ TIL plus Th1 gene expression) immune responses. Analysis of active versus inactive TLS in untreated patients revealed that the former are associated with positive clinical outcomes. TLS also contain functional T follicular regulatory (Tfr) TIL, which are characterized by a CD25+CXCR5+GARP+FOXP3+ phenotype and a demethylated FOXP3 gene. Functional Tfr inhibited functional Tfh activities via a glycoprotein A repetitions predominant (GARP)-associated TGF-ß-dependent mechanism. The activity of tumor-associated TLS was dictated by the relative balance between functional Tfh TIL and functional Tfr TIL. These data provide mechanistic insight into TLS processes orchestrated by functional Th1-oriented Tfh TIL, including TIL-B and CD8+ TIL activation and immunological memory generation. Tfh TIL, regulated by functional Tfr TIL, are an expected key target of PD-1/PD-L1 blockade.


Asunto(s)
Neoplasias de la Mama/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Células T Auxiliares Foliculares/inmunología , Células TH1/inmunología , Inmunidad Adaptativa , Linfocitos T CD8-positivos/inmunología , Femenino , Humanos , Proteínas de la Membrana/análisis , Proteínas de la Membrana/fisiología , Receptor de Muerte Celular Programada 1/análisis , Receptores CXCR5/análisis , Linfocitos T Reguladores/inmunología
4.
JCI Insight ; 52019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31408436

RESUMEN

Tumor-infiltrating B-cells (TIL-B) in breast cancer (BC) have previously been associated with improved clinical outcomes; however, their role(s) in tumor immunity is not currently well known. This study confirms and extends the correlation between higher TIL-B densities and positive outcomes through an analysis of HER2-positive and triple-negative BC patients from the BIG 02-98 clinical trial (10yr mean follow-up). Fresh tissue analyses identify an increase in TIL-B density in untreated primary BC compared to normal breast tissues, which is associated with global, CD4+ and CD8+ TIL, higher tumor grades, higher proliferation and hormone receptor negativity. All B-cell differentiation stages are detectable but significant increases in memory TIL-B are consistently present. BC with higher infiltrates are specifically characterized by germinal center TIL-B, which in turn are correlated with TFH TIL and antibody-secreting TIL-B principally located in tertiary lymphoid structures. Some TIL-B also interact directly with tumor cells. Functional analyses reveal TIL-B are responsive to BCR stimulation ex vivo, express activation markers and produce cytokines and immunoglobulins despite reduced expression of the antigen-presenting molecules HLA-DR and CD40. Overall, these data support the concept that ongoing humoral immune responses are generated by TIL-B and help to generate effective anti-tumor immunity at the tumor site.


Asunto(s)
Linfocitos B/inmunología , Neoplasias de la Mama/inmunología , Inmunidad Humoral/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Inmunidad Adaptativa , Presentación de Antígeno , Neoplasias de la Mama/patología , Citocinas , Femenino , Antígenos HLA-DR/metabolismo , Humanos , Activación de Linfocitos , Persona de Mediana Edad , Receptor ErbB-2/metabolismo , Estructuras Linfoides Terciarias
5.
Cancer Lett ; 450: 88-97, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30797818

RESUMEN

This study investigated the prevalence of TIL subpopulations, TLS, PD-1 and PD-L1 in tumors from TNBC patients harboring wild-type or mutated BRCA1 or BRCA2 germline genes. This TNBC cohort included 85% TIL-positive (≥10%) tumors with 21% classified as TILhi (≥50%). Interestingly, the BRCAmut group had a significantly higher incidence of TILpos tumors compared to the BRCAwt group (P = 0.037). T cells were dominant in the infiltrate but no statistically significant differences were detected between BRCAwt and BRCAmut for CD3+, CD4+ and CD8+ T cells or CD20+ B cells. TLS were detected in 74% of tumors but again no significant differences between the BRCA groups. PD-1 expression was observed in 33% and PD-L1 in 53% (any cell, cut-off ≥1%) tumors for the entire TNBC cohort. PD-1 expression correlated with PD-L1 and both with TIL and TLS but was not associated with BRCA mutational status. Our analyses reveal that BRCAwt and BRCAmut TNBC are similar except for a significant increase of TILpos tumors in the BRCAmut group. While BRCA gene mutations may not directly drive immune infiltration, the greater number of TILpos tumors could signal greater immunogenicity in this group.


Asunto(s)
Genes BRCA1 , Genes BRCA2 , Mutación de Línea Germinal , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/inmunología , Adulto , Antígeno B7-H1/biosíntesis , Antígeno B7-H1/inmunología , Femenino , Humanos , Linfocitos Infiltrantes de Tumor/patología , Persona de Mediana Edad , Adhesión en Parafina , Receptor de Muerte Celular Programada 1/biosíntesis , Receptor de Muerte Celular Programada 1/inmunología , Fijación del Tejido , Neoplasias de la Mama Triple Negativas/patología
6.
EBioMedicine ; 39: 226-238, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30579865

RESUMEN

BACKGROUND: FOXP1, a transcriptional regulator of lymphocyte development, is abnormally expressed in some human tumors. This study investigated FOXP1-mediated regulation of tumor infiltrating lymphocytes (TIL) in untreated primary breast cancer (BC). METHODS: FOXP1 expression was analyzed in tissues from primary untreated breast tumors, BC cell lines and the METABRIC gene expression BC dataset. Cytokine and chemokine expression and lymphocyte migration in response to primary tumor supernatants (SN) was compared between FOXP1hi and FOXP1lo primary BC. FINDING: FOXP1 expression was higher in estrogen receptor positive compared to negative BC. FOXP1hi tumors were significantly associated with lower TIL and fewer tertiary lymphoid structures (TLS) compared to FOXP1lo BC. Silencing FOXP1 in BC cell lines positively impacted cytokine and chemokine expression with the inverse effect associated with overexpression. CXCL9, CXCL10, CXCL11, CXCL13, CX3CL, CCL20, IL2, IL21, GZMB and IFNG expression decreased while IL10 and TGFß increased in FOXP1hi compared to FOXP1lo primary BC. Lymphocyte migration using primary BC supernatants detected decreased mobility toward FOXP1hi supernatants. FOXP1lo BC expresses higher levels of chemokines driving TIL migration. The METABRIC gene expression dataset analysis show FOXP1 expression is associated with unfavorable BC outcomes. INTERPRETATION: These data identify FOXP1 as an important negative regulator of immune responses in BC via its regulation of cytokine and chemokine expression. FUND: Belgian Fund for Scientific Research (FNRS 3.4513.12F) and Opération Télévie (7.4636.13F and 7.4609.15F), Fonds J.C. Heuson and Fonds Lambeau-Marteaux.


Asunto(s)
Neoplasias de la Mama/inmunología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Movimiento Celular , Citocinas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Pronóstico , Receptores de Estrógenos/metabolismo , Análisis de Supervivencia , Células Tumorales Cultivadas , Regulación hacia Arriba
7.
Front Immunol ; 8: 1412, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163490

RESUMEN

There is an exponentially growing interest in targeting immune checkpoint molecules in breast cancer (BC), particularly in the triple-negative subtype where unmet treatment needs remain. This study was designed to analyze the expression, localization, and prognostic role of PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM3 in primary BC. Gene expression analysis using the METABRIC microarray dataset found that all six immune checkpoint molecules are highly expressed in basal-like and HER2-enriched compared to the other BC molecular subtypes. Flow cytometric analysis of fresh tissue homogenates from untreated primary tumors show that PD-1 is principally expressed on CD4+ or CD8+ T cells and CTLA-4 is expressed on CD4+ T cells. The global proportion of PD-L1+, PD-L2+, LAG3+, and TIM3+ tumor-infiltrating lymphocytes (TIL) was low and detectable in only a small number of tumors. Immunohistochemically staining fixed tissues from the same tumors was employed to score TIL and tertiary lymphoid structures (TLS). PD-L1+, PD-L2+, LAG3+, and TIM3+ cells were detected in some TLS in a pattern that resembles secondary lymphoid organs. This observation suggests that TLS are important sites of immune activation and regulation, particularly in tumors with extensive baseline immune infiltration. Significantly improved overall survival was correlated with PD-1 expression in the HER2-enriched and PD-L1 or CTLA-4 expression in basal-like BC. PD-1 and CTLA-4 proteins were most frequently detected on TIL, which supports the correlations observed between their gene expression and improved long-term outcome in basal-like and HER2-enriched BC. PD-L1 expression by tumor or immune cells is uncommon in BC. Overall, the data presented here distinguish PD-1 as a marker of T cell activity in both the T and B cell areas of BC associated TLS. We found that immune checkpoint molecule expression parallels the extent of TIL and TLS, although there is a noteworthy amount of heterogeneity between tumors even within the same molecular subtype. These data indicate that assessing the levels of immune checkpoint molecule expression in an individual patient has important implications for the success of therapeutically targeting them in BC.

8.
Mod Pathol ; 30(9): 1204-1212, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28621322

RESUMEN

The presence of tumor-infiltrating lymphocytes (TIL), reflecting host immune activity, is frequently correlated with better clinical outcomes, particularly in HER2-positive and triple-negative breast cancer. Recent findings suggest that organization of immune infiltrates in tertiary lymphoid structures also has a beneficial effect on survival. This study investigated inter- and intra-observer variation in TIL assessment using conventional hematoxylin-eosin versus immunohistochemical staining to identify immune cells. Global, intratumoral, and stromal TIL, as well as tertiary lymphoid structures were scored independently by experienced pathologists on full-face tumor sections (n=124). The fidelity of scoring infiltrates in core biopsies compared to surgical specimens, and pathological assessment compared to quantitative digital analysis was also evaluated. The inter-observer concordance correlation coefficient was 0.80 for global, 0.72 for intratumoral, and 0.71 for stromal TIL, while the intra-observer concordance correlation coefficient was 0.90 for global, 0.77 for intratumoral, and 0.89 for stromal TIL using immunohistochemical stains. Correlations were lower with hematoxylin-eosin stains, particularly for intratumoral TIL, while global scores had the highest concordance correlation coefficients. Our study concluded that tertiary lymphoid structures are accurately and consistently scored using immunohistochemical but not hematoxylin-eosin stains. A strong association was observed between TIL in core biopsies and surgical samples (R2=0.74) but this did not extend to tertiary lymphoid structures (R2=0.26). TIL scored by pathologists and digital analysis were correlated but our analysis reveals a constant bias between these methods. These data challenge current criteria for TIL and tertiary lymphoid structure assessment in breast cancer and recommend that how pathologists evaluate immune infiltrates be reexamined for future studies.


Asunto(s)
Neoplasias de la Mama/inmunología , Inmunohistoquímica , Linfocitos Infiltrantes de Tumor/inmunología , Coloración y Etiquetado , Estructuras Linfoides Terciarias/inmunología , Biopsia , Neoplasias de la Mama/patología , Colorantes , Eosina Amarillenta-(YS) , Femenino , Hematoxilina , Humanos , Linfocitos Infiltrantes de Tumor/patología , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Pronóstico , Reproducibilidad de los Resultados , Coloración y Etiquetado/métodos , Estructuras Linfoides Terciarias/patología
9.
Oncoimmunology ; 6(1): e1257452, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197375

RESUMEN

The clinical relevance of tumor-infiltrating lymphocytes (TIL) in breast cancer (BC) has been clearly established by their demonstrated correlation with long-term positive outcomes. Nevertheless, the relationship between protective immunity, observed in some patients, and critical features of the infiltrate remains unresolved. This study examined TIL density, composition and organization together with PD-1 and PD-L1 expression in freshly collected and paraffin-embedded tissues from 125 patients with invasive primary BC. Tumor and normal breast tissues were analyzed using both flow cytometry and immunohistochemistry. TIL density distribution is a continuum with 25% of tumors identified as TIL-negative at a TIL density equivalent to normal breast tissues. TIL-positive tumors (75%) were equally divided into TIL-intermediate and TIL-high. Tumors had higher mean frequencies of CD4+ T cells and CD19+ B cells and a lower mean frequency of CD8+ T cells compare with normal tissues, increasing the CD4+/CD8+ T-cell ratio. Tertiary lymphoid structures (TLS), principally located in the peri-tumoral stroma, were detected in 60% of tumors and correlated with higher TIL infiltration. PD-1 and PD-L1 expression were also associated with higher TIL densities and TLS. TIL density, TLS and PD-L1 expression were correlated with more aggressive tumor characteristics, including higher proliferation and hormone receptor negativity. Our findings reveal an important relationship between PD-1/PD-L1 expression, increased CD4+ T and B-cell infiltration, TIL density and TLS, suggesting that evaluating not only the extent but also the nature and location of the immune infiltrate should be considered when evaluating antitumor immunity and the potential for benefit from immunotherapies.

10.
J Vis Exp ; (94)2014 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-25548995

RESUMEN

The ability of malignant cells to evade the immune system, characterized by tumor escape from both innate and adaptive immune responses, is now accepted as an important hallmark of cancer. Our research on breast cancer focuses on the active role that tumor infiltrating lymphocytes play in tumor progression and patient outcome. Toward this goal, we developed a methodology for the rapid isolation of intact lymphoid cells from normal and abnormal tissues in an effort to evaluate them proximate to their native state. Homogenates prepared using a mechanical dissociator show both increased viability and cell recovery while preserving surface receptor expression compared to enzyme-digested tissues. Furthermore, enzymatic digestion of the remaining insoluble material did not recover additional CD45(+) cells indicating that quantitative and qualitative measurements in the primary homogenate likely genuinely reflect infiltrating subpopulations in the tissue fragment. The lymphoid cells in these homogenates can be easily characterized using immunological (phenotype, proliferation, etc.) or molecular (DNA, RNA and/or protein) approaches. CD45(+) cells can also be used for subpopulation purification, in vitro expansion or cryopreservation. An additional benefit of this approach is that the primary tissue supernatant from the homogenates can be used to characterize and compare cytokines, chemokines, immunoglobulins and antigens present in normal and malignant tissues. This protocol functions extremely well for human breast tissues and should be applicable to a wide variety of normal and abnormal tissues.


Asunto(s)
Neoplasias de la Mama/patología , Mama/citología , Técnicas Citológicas/métodos , Linfocitos Infiltrantes de Tumor/citología , Mama/inmunología , Neoplasias de la Mama/inmunología , Femenino , Humanos , Antígenos Comunes de Leucocito/química , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología
11.
PLoS One ; 9(12): e113918, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25470252

RESUMEN

Plasmodium falciparum is responsible for severe malaria which is one of the most prevalent and deadly infectious diseases in the world. The antimalarial therapeutic arsenal is hampered by the onset of resistance to all known pharmacological classes of compounds, so new drugs with novel mechanisms of action are critically needed. Albitiazolium is a clinical antimalarial candidate from a series of choline analogs designed to inhibit plasmodial phospholipid metabolism. Here we developed an original chemical proteomic approach to identify parasite proteins targeted by albitiazolium during their native interaction in living parasites. We designed a bifunctional albitiazolium-derived compound (photoactivable and clickable) to covalently crosslink drug-interacting parasite proteins in situ followed by their isolation via click chemistry reactions. Mass spectrometry analysis of drug-interacting proteins and subsequent clustering on gene ontology terms revealed parasite proteins involved in lipid metabolic activities and, interestingly, also in lipid binding, transport, and vesicular transport functions. In accordance with this, the albitiazolium-derivative was localized in the endoplasmic reticulum and trans-Golgi network of P. falciparum. Importantly, during competitive assays with albitiazolium, the binding of choline/ethanolamine phosphotransferase (the enzyme involved in the last step of phosphatidylcholine synthesis) was substantially displaced, thus confirming the efficiency of this strategy for searching albitiazolium targets.


Asunto(s)
Malaria Falciparum/prevención & control , Plasmodium falciparum/efectos de los fármacos , Proteoma/metabolismo , Proteómica/métodos , Proteínas Protozoarias/metabolismo , Tiazoles/farmacología , Animales , Antimaláricos/química , Antimaláricos/metabolismo , Antimaláricos/farmacología , Unión Competitiva , Química Clic , Reactivos de Enlaces Cruzados/química , Diacilglicerol Colinafosfotransferasa/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Modelos Químicos , Estructura Molecular , Plasmodium falciparum/metabolismo , Unión Proteica , Proteoma/química , Proteínas Protozoarias/química , Tiazoles/química , Tiazoles/metabolismo , Red trans-Golgi/metabolismo
12.
Antonie Van Leeuwenhoek ; 103(4): 701-12, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23180374

RESUMEN

The gene encoding the ß-galactosidase from the dairy Lactococcus lactis IL1403 strain was cloned, sequenced and overexpressed in Escherichia coli. The purified enzyme has a tetrameric arrangement composed of four identical 120 kDa subunits. Biochemical characterization showed that it is optimally active within a wide range of temperatures from 15 to 55 °C and of pH from 6.0 to 7.5. For its maximal activity this enzyme requires only 0.8 mM Fe(2+) and 1.6 mM Mg(2+). Purified protein displayed a high catalytic efficiency of 102 s(-1) mM(-1) for lactose. The enzyme stability was increased by immobilization mainly at low pH (from 4.0 to 5.5) and high temperatures (55 and 60 °C). The bioconversion of lactose using the L. lactis ß-galactosidase allows the production of lactose with a high bioconversion rate (98 %) within a wide range of pH and temperature.


Asunto(s)
Lactococcus lactis/enzimología , Lactosa/metabolismo , beta-Galactosidasa/metabolismo , Clonación Molecular , Activadores de Enzimas , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Hidrólisis , Lactococcus lactis/genética , Peso Molecular , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Temperatura , beta-Galactosidasa/química , beta-Galactosidasa/genética , beta-Galactosidasa/aislamiento & purificación
13.
Res Microbiol ; 161(7): 515-25, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20472057

RESUMEN

The gene encoding beta-galactosidase from dairy Streptococcus thermophilus strain LMD9 was cloned, sequenced and expressed in Escherichia coli. The recombinant enzyme was purified and showed high specific activity of 464 U/mg. This protein displays a homotetrameric arrangement composed of four 118 kDa monomers. Monitoring of the activity showed that this enzyme was optimally active at a wide range of temperatures (25-40 degrees C) and at pH from 6.5 to 7.5. Immobilization of the recombinant E. coli in alginate beads clearly enhanced the enzyme activity at various temperatures, including 4 and 50 degrees C, and at pH values from 4.0 to 8.5. Stability studies indicated that this biocatalyst has high stability within a broad range of temperatures and pH. This stability was improved not only by addition of 1 mM of Mn(2+) and 1.2 mM Mg(2+), but essentially through immobilization. The remarkable bioconversion rates of lactose in milk and whey at different temperatures revealed the attractive catalytic efficiency of this enzyme, thus promoting its use for lactose hydrolysis in milk and other dairy products.


Asunto(s)
Lactosa/metabolismo , Streptococcus thermophilus/enzimología , beta-Galactosidasa/metabolismo , Animales , Secuencia de Bases , Reactores Biológicos , Clonación Molecular , Productos Lácteos , Estabilidad de Enzimas , Enzimas Inmovilizadas , Escherichia coli/genética , Expresión Génica , Genes Bacterianos , Hidrólisis , Operón Lac , Leche/metabolismo , Proteínas de la Leche/metabolismo , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Streptococcus thermophilus/genética , Proteína de Suero de Leche , beta-Galactosidasa/química , beta-Galactosidasa/genética , beta-Galactosidasa/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA