Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Am J Pathol ; 193(11): 1706-1720, 2023 Nov.
Article En | MEDLINE | ID: mdl-36328299

A pathologic feature of late-onset retinal degeneration caused by the S163R mutation in C1q-tumor necrosis factor-5 (C1QTNF5) is the presence of unusually thick deposits between the retinal pigmented epithelium (RPE) and the vascular choroid, considered a hallmark of this disease. Following its specific expression in mouse RPE, the S163R mutant exhibits a reversed polarized distribution relative to the apically secreted wild-type C1QTNF5, and forms widespread, prominent deposits that gradually increase in size with aging. The current study shows that S163R deposits expand to a considerable thickness through a progressive increase in the basolateral RPE membrane, substantially raising the total RPE height, and enabling their clear imaging as a distinct hyporeflective layer by noninvasive optical coherence tomography in advanced age animals. This phenotype bears a striking resemblance to ocular pathology previously documented in patients harboring the S163R mutation. Therefore, a similar viral vector-based gene delivery approach was used to also investigate the behavior of P188T and G216C, two novel pathogenic C1QTNF5 mutants recently reported in patients for which histopathologic data are lacking. Both mutants primarily impacted the RPE/photoreceptor interface and did not generate basal laminar deposits. Distinct distribution patterns and phenotypic consequences of C1QTNF5 mutants were observed in vivo, which suggested that multiple pathobiological mechanisms contribute to RPE dysfunction and vision loss in this disorder.


Retinal Degeneration , Humans , Mice , Animals , Retinal Degeneration/pathology , Mutation , Retinal Pigment Epithelium/metabolism , Phenotype
2.
J Biol Chem ; 295(19): 6498-6508, 2020 05 08.
Article En | MEDLINE | ID: mdl-32238431

Arrestin-1 is the arrestin family member responsible for inactivation of the G protein-coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1-enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells.


Arrestin/chemistry , Biomarkers, Tumor/chemistry , DNA-Binding Proteins/chemistry , Models, Molecular , Multienzyme Complexes/chemistry , Phosphopyruvate Hydratase/chemistry , Rhodopsin/chemistry , Tumor Suppressor Proteins/chemistry , Arrestin/genetics , Binding Sites , Biomarkers, Tumor/genetics , Catalysis , DNA-Binding Proteins/genetics , Humans , Multienzyme Complexes/genetics , Phosphopyruvate Hydratase/genetics , Rhodopsin/genetics , Tumor Suppressor Proteins/genetics
3.
J Pathol ; 250(2): 195-204, 2020 02.
Article En | MEDLINE | ID: mdl-31625146

Usher syndrome type 3 (USH3) is an autosomal recessively inherited disorder caused by mutations in the gene clarin-1 (CLRN1), leading to combined progressive hearing loss and retinal degeneration. The cellular distribution of CLRN1 in the retina remains uncertain, either because its expression levels are low or because its epitopes are masked. Indeed, in the adult mouse retina, Clrn1 mRNA is developmentally downregulated, detectable only by RT-PCR. In this study we used the highly sensitive RNAscope in situ hybridization assay and single-cell RNA-sequencing techniques to investigate the distribution of Clrn1 and CLRN1 in mouse and human retina, respectively. We found that Clrn1 transcripts in mouse tissue are localized to the inner retina during postnatal development and in adult stages. The pattern of Clrn1 mRNA cellular expression is similar in both mouse and human adult retina, with CLRN1 transcripts being localized in Müller glia, and not photoreceptors. We generated a novel knock-in mouse with a hemagglutinin (HA) epitope-tagged CLRN1 and showed that CLRN1 is expressed continuously at the protein level in the retina. Following enzymatic deglycosylation and immunoblotting analysis, we detected a single CLRN1-specific protein band in homogenates of mouse and human retina, consistent in size with the main CLRN1 isoform. Taken together, our results implicate Müller glia in USH3 pathology, placing this cell type to the center of future mechanistic and therapeutic studies to prevent vision loss in this disease. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Ependymoglial Cells/metabolism , Membrane Proteins/biosynthesis , Retina/metabolism , Usher Syndromes/metabolism , Animals , Glycosylation , Humans , In Situ Hybridization , Membrane Proteins/genetics , Mice, Inbred C57BL , Neuroglia/metabolism , RNA, Messenger/genetics , Usher Syndromes/pathology
4.
Adv Exp Med Biol ; 1185: 109-112, 2019.
Article En | MEDLINE | ID: mdl-31884597

Mutations in more than 80 genes lead to photoreceptor degeneration. Although subretinal delivery of genes to photoreceptor neurons using AAV vectors has proven itself as an efficient therapeutic and investigative tool in various mouse models, the surgical procedure itself could lead to loss of retinal function even in healthy animals, complicating the interpretation of experimental studies and requiring thoroughly designed controls. A noninvasive approach, such as a systemic delivery of genes with AAV through the bloodstream, may serve as a promising direction in tool development. Previous studies have established that AAV9 is capable of crossing the blood-brain and blood-retina barrier and even has a limited capacity to transduce photoreceptors. AAV-PHP.eB is a novel AAV9-based mutant capsid that crosses the blood-brain barrier and efficiently transduces central nervous system in the adult mice. Here, we investigated its ability to cross the blood-retina barrier and transduce retinal neurons. Control experiments demonstrated virtually nonexisting ability of this capsid to transduce retinal cells via intravitreal administration but high efficiency to transduce photoreceptors via subretinal route. Systemic delivery of AAV-PHP.eB in adult mice robustly transduced horizontal cells throughout the entire retina, but not photoreceptors. Our study suggests that AAV-PHP.eB crosses the intra-retinal blood-retinal barrier (IR-BRB), efficiently transduces horizontal cells located adjacent to IR-BRB, but has very limited ability to further penetrate retina and reach photoreceptors.


Blood-Retinal Barrier , Dependovirus , Gene Transfer Techniques , Genetic Vectors , Retina/cytology , Animals , Capsid , Mice , Photoreceptor Cells , Transduction, Genetic
5.
PLoS One ; 11(2): e0148773, 2016.
Article En | MEDLINE | ID: mdl-26867008

PURPOSE: Bardet-Biedl syndrome is a complex ciliopathy that usually manifests with some form of retinal degeneration, amongst other ciliary-related deficiencies. One of the genetic causes of this syndrome results from a defect in Bardet-Biedl Syndrome 5 (BBS5) protein. BBS5 is one component of the BBSome, a complex of proteins that regulates the protein composition in cilia. In this study, we identify a smaller molecular mass form of BBS5 as a variant formed by alternative splicing and show that expression of this splice variant is restricted to the retina. METHODS: Reverse transcription PCR from RNA was used to isolate and identify potential alternative transcripts of Bbs5. A peptide unique to the C-terminus of the BBS5 splice variant was synthesized and used to prepare antibodies that selectively recognized the BBS5 splice variant. These antibodies were used on immunoblots of tissue extracts to determine the extent of expression of the alternative transcript and on tissue slices to determine the localization of expressed protein. Pull-down of fluorescently labeled arrestin1 by immunoprecipitation of the BBS5 splice variant was performed to assess functional interaction between the two proteins. RESULTS: PCR from mouse retinal cDNA using Bbs5-specific primers amplified a unique cDNA that was shown to be a splice variant of BBS5 resulting from the use of cryptic splicing sites in Intron 7. The resulting transcript codes for a truncated form of the BBS5 protein with a unique 24 amino acid C-terminus, and predicted 26.5 kD molecular mass. PCR screening of RNA isolated from various ciliated tissues and immunoblots of protein extracts from these same tissues showed that this splice variant was expressed in retina, but not brain, heart, kidney, or testes. Quantitative PCR showed that the splice variant transcript is 8.9-fold (+/- 1.1-fold) less abundant than the full-length transcript. In the retina, the splice variant of BBS5 appears to be most abundant in the connecting cilium of photoreceptors, where BBS5 is also localized. Like BBS5, the binding of BBS5L to arrestin1 can be modulated by phosphorylation through protein kinase C. CONCLUSIONS: In this study we have identified a novel splice variant of BBS5 that appears to be expressed only in the retina. The BBS5 splice variant is expressed at approximately 10% of full-length BBS5 level. No unique functional or localization properties could be identified for the splice variant compared to BBS5.


Alternative Splicing , Bardet-Biedl Syndrome/genetics , Carrier Proteins/metabolism , Gene Expression Regulation , Proteins/metabolism , Retina/metabolism , Amino Acid Sequence , Animals , Base Sequence , Carrier Proteins/genetics , Cattle , Cilia/metabolism , Cytoskeletal Proteins , DNA, Complementary/metabolism , Humans , Immunoprecipitation , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Neurons/metabolism , Phosphate-Binding Proteins , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Proteins/genetics , Rabbits , Reverse Transcriptase Polymerase Chain Reaction , Sus scrofa , Tissue Distribution , Xenopus laevis
6.
Cell Mol Life Sci ; 70(23): 4603-16, 2013 Dec.
Article En | MEDLINE | ID: mdl-23817741

Arrestins are dynamic proteins that move between cell compartments triggered by stimulation of G-protein-coupled receptors. Even more dynamically in vertebrate photoreceptors, arrestin1 (Arr1) moves between the inner and outer segments according to the light conditions. Previous studies have shown that the light-driven translocation of Arr1 in rod photoreceptors is initiated by rhodopsin through a phospholipase C/protein kinase C (PKC) signaling cascade. The purpose of this study is to identify the PKC substrate that regulates the translocation of Arr1. Mass spectrometry was used to identify the primary phosphorylated proteins in extracts prepared from PKC-stimulated mouse eye cups, confirming the finding with in vitro phosphorylation assays. Our results show that Bardet-Biedl syndrome 5 (BBS5) is the principal protein phosphorylated either by phorbol ester stimulation or by light stimulation of PKC. Via immunoprecipitation of BBS5 in rod outer segments, Arr1 was pulled down; phosphorylation of BBS5 reduced this co-precipitation of Arr1. Immunofluorescence and immunoelectron microscopy showed that BBS5 principally localizes along the axonemes of rods and cones, but also in photoreceptor inner segments, and synaptic regions. Our principal findings in this study are threefold. First, we demonstrate that BBS5 is post-translationally regulated by phosphorylation via PKC, an event that is triggered by light in photoreceptor cells. Second, we find a direct interaction between BBS5 and Arr1, an interaction that is modulated by phosphorylation of BBS5. Finally, we show that BBS5 is distributed along the photoreceptor axoneme, co-localizing with Arr1 in the dark. These findings suggest a role for BBS5 in regulating light-dependent translocation of Arr1 and a model describing its role in Arr1 translocation is proposed.


Arrestins/metabolism , Carrier Proteins/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Animals , Animals, Genetically Modified , Arrestins/genetics , Axoneme/metabolism , Carrier Proteins/genetics , Cytoskeletal Proteins , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immunoblotting , Light , Mass Spectrometry , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Immunoelectron , Models, Biological , Phosphate-Binding Proteins , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation/radiation effects , Protein Binding/radiation effects , Protein Kinase C/metabolism , Retinal Rod Photoreceptor Cells/ultrastructure , Xenopus , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
...