Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 9(1): 44, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402256

RESUMEN

The human papillomavirus minor capsid protein L2 is being extensively explored in pre-clinical studies as an attractive vaccine antigen capable of inducing broad-spectrum prophylactic antibody responses. Recently, we have developed two HPV vaccine antigens - PANHPVAX and CUT-PANHPVAX- both based on heptameric nanoparticle antigens displaying polytopes of the L2 major cross-neutralizing epitopes of eight mucosal and twelve cutaneous HPV types, respectively. Prompted by the variable neutralizing antibody responses against some of the HPV types targeted by the antigens observed in previous studies, here we investigated the influence on immunogenicity of six distinct glycine-proline spacers inserted upstream to a specific L2 epitope. We show that spacer variants differentially influence antigen immunogenicity in a mouse model, with the antigen constructs M8merV6 and C12merV6 displaying a superior ability in the induction of neutralizing antibodies as determined by pseudovirus-based neutralization assays (PBNAs). L2-peptide enzyme-linked immunosorbent assay (ELISA) assessments determined the total anti-L2 antibody level for each antigen variant, showing for the majority of sera a correlation with their repective neutralizing antibody level. Surface Plasmon Resonance revealed that L2 epitope-specific, neutralizing monoclonal antibodies (mAbs) display distinct avidities to different antigen spacer variants. Furthermore, mAb affinity toward individual spacer variants was well correlated with their neutralizing antibody induction capacity, indicating that the mAb affinity assay predicts L2-based antigen immunogenicity. These observations provide insights on the development and optimization of L2-based HPV vaccines.

2.
Eur J Pharm Sci ; 191: 106609, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37838239

RESUMEN

One of the strategies proposed for the neutralization of SARS-CoV-2 has been to synthetize small proteins able to act as a decoy towards the virus spike protein, preventing it from entering the host cells. In this work, the incorporation of one of these proteins, LCB1, within a spray-dried formulation for inhalation was investigated. A design of experiments approach was applied to investigate the optimal condition for the manufacturing of an inhalable powder. The lead formulation, containing 6% w/w of LCB1 as well as trehalose and L-leucine as excipients, preserved the physical stability of the protein and its ability to neutralize the virus. In addition, the powder had a fine particle fraction of 58.6% and a very high extra-fine particle fraction (31.3%) which could allow a peripheral deposition in the lung. The in vivo administration of the LCB1 inhalation powder showed no significant difference in the pharmacokinetic from the liquid formulation, indicating the rapid dissolution of the microparticles and the protein capability to translocate into the plasma. Moreover, LCB1 in plasma samples still maintained the ability to neutralize the virus. In conclusion, the optimized spray drying conditions allowed to obtain an inhalation powder able to preserve the protein biological activity, rendering it suitable for a systemic prevention of the viral infection via pulmonary administration.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Polvos , SARS-CoV-2 , Tamaño de la Partícula , Aerosoles y Gotitas Respiratorias , Administración por Inhalación , Péptidos/metabolismo , Pulmón/metabolismo , Inhaladores de Polvo Seco
3.
iScience ; 26(6): 106940, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37275517

RESUMEN

Humoral immunity is sensitive to evasion by SARS-CoV-2 mutants, but CD8 T cells seem to be more resistant to mutational inactivation. By a systematic analysis of 30 spike variant peptides containing the most relevant VOC and VOI mutations that have accumulated overtime, we show that in vaccinated and convalescent subjects, mutated epitopes can have not only a neutral or inhibitory effect on CD8 T cell recognition but can also enhance or generate de novo CD8 T cell responses. The emergence of these mutated T cell function enhancing epitopes likely reflects an epiphenomenon of SARS-CoV-2 evolution driven by antibody evasion and increased virus transmissibility. In a subset of individuals with weak and narrowly focused CD8 T cell responses selection of these heteroclitic-like epitopes may bear clinical relevance by improving antiviral protection. The functional enhancing effect of these peptides is also worth of consideration for the future development of new generation, more potent COVID-19 vaccines.

4.
NPJ Vaccines ; 7(1): 116, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216845

RESUMEN

Skin colonization by human papillomavirus (HPV) is typically related to inconspicuous cutaneous infections without major disease or complications in immunocompetent individuals. However, in immunosuppressed patients, especially organ transplanted recipients, cutaneous HPV infections may cause massive, highly spreading and recurrent skin lesions upon synergism with UV-exposure. Current HPV prophylactic vaccines are not effective against cutaneous HPV types (cHPV). By applying a modular polytope-based approach, in this work, we explored different vaccine candidates based on selected, tandemly arranged cHPV-L2 epitopes fused to thioredoxin (Trx) as a scaffold protein. Upon conversion to heptameric nanoparticles with the use of a genetically fused oligomerization domain, our candidate Trx-L2 vaccines induce broadly neutralizing immune responses against 19 cHPV in guinea pigs. Similar findings were obtained in mice, where protection against virus challenge was also achieved via passive transfer of immune sera. Remarkably, immunization with the candidate cHPV vaccines also induced immune responses against several mucosal low- and high-risk HPV types, including HPV16 and 18. Based on cumulative immunogenicity data but also on ease and yield of production, we identified a lead vaccine candidate bearing 12 different cHPV-L2 epitopes that holds great promise as a scalable and GMP production-compatible lead molecule for the prevention of post-transplantation skin lesions caused by cHPV infection.

5.
Front Immunol ; 13: 958123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032169

RESUMEN

Polycationic resurfaced proteins hold great promise as cell-penetrating bioreagents but their use as carriers for the intracellular delivery of peptide immuno-epitopes has not thus far been explored. Here, we report on the construction and functional characterization of a positively supercharged derivative of Pyrococcus furiosus thioredoxin (PfTrx), a thermally hyperstable protein we have previously validated as a peptide epitope display and immunogenicity enhancing scaffold. Genetic conversion of 13 selected amino acids to lysine residues conferred to PfTrx a net charge of +21 (starting from the -1 charge of the wild-type protein), along with the ability to bind nucleic acids. In its unfused form, +21 PfTrx was readily internalized by HeLa cells and displayed a predominantly cytosolic localization. A different intracellular distribution was observed for a +21 PfTrx-eGFP fusion protein, which although still capable of cell penetration was predominantly localized within endosomes. A mixed cytosolic/endosomal partitioning was observed for a +21 PfTrx derivative harboring three tandemly repeated copies of a previously validated HPV16-L2 (aa 20-38) B-cell epitope grafted to the display site of thioredoxin. Compared to its wild-type counterpart, the positively supercharged antigen induced a faster immune response and displayed an overall superior immunogenicity, including a substantial degree of self-adjuvancy. Altogether, the present data point to +21 PfTrx as a promising novel carrier for intracellular antigen delivery and the construction of potentiated recombinant subunit vaccines.


Asunto(s)
Archaea , Péptidos de Penetración Celular , Tiorredoxinas , Antígenos , Péptidos de Penetración Celular/inmunología , Epítopos de Linfocito B , Células HeLa , Humanos , Péptidos , Tiorredoxinas/inmunología , Vacunas de Subunidad
6.
Sensors (Basel) ; 22(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35891142

RESUMEN

Innovative and highly performing smart voltammetric immunosensors for rapid and effective serological tests aimed at the determination of SARS-CoV-2 antibodies were developed and validated in human serum matrix. Two immunosensors were developed for the determination of immunoglobulins directed against either the nucleocapsid or the spike viral antigen proteins. The immunosensors were realized using disposable screen-printed electrodes modified with nanostructured materials for the immobilization of the antigens. Fast quantitative detection was achieved, with analysis duration being around 1 h. Signal readout was carried out through a smart, compact and battery-powered potentiostat, based on a Wi-Fi protocol and devised for the Internet of Things (IoT) paradigm. This device is used for the acquisition, storage and sharing of clinical data. Outstanding immunosensors' sensitivity, specificity and accuracy (100%) were assessed, according to the diagnostic guidelines for epidemiological data. The overall performance of the sensing devices, combined with the portability of the IoT-based device, enables their suitability as a high-throughput diagnostic tool. Both of the immunosensors were validated using clinical human serum specimens from SARS-CoV-2 infected patients, provided by IRCCS Ospedale San Raffaele.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Vacunas , Anticuerpos Antivirales , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Humanos , Inmunoensayo , Sistemas de Atención de Punto , SARS-CoV-2 , Sensibilidad y Especificidad , Pruebas Serológicas
7.
Biosensors (Basel) ; 12(6)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35735573

RESUMEN

An IoT-WiFi smart and portable electrochemical immunosensor for the quantification of SARS-CoV-2 spike protein was developed with integrated machine learning features. The immunoenzymatic sensor is based on the immobilization of monoclonal antibodies directed at the SARS-CoV-2 S1 subunit on Screen-Printed Electrodes functionalized with gold nanoparticles. The analytical protocol involves a single-step sample incubation. Immunosensor performance was validated in a viral transfer medium which is commonly used for the desorption of nasopharyngeal swabs. Remarkable specificity of the response was demonstrated by testing H1N1 Hemagglutinin from swine-origin influenza A virus and Spike Protein S1 from Middle East respiratory syndrome coronavirus. Machine learning was successfully used for data processing and analysis. Different support vector machine classifiers were evaluated, proving that algorithms affect the classifier accuracy. The test accuracy of the best classification model in terms of true positive/true negative sample classification was 97.3%. In addition, the ML algorithm can be easily integrated into cloud-based portable Wi-Fi devices. Finally, the immunosensor was successfully tested using a third generation replicating incompetent lentiviral vector pseudotyped with SARS-CoV-2 spike glycoprotein, thus proving the applicability of the immunosensor to whole virus detection.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Nanopartículas del Metal , COVID-19/diagnóstico , Oro , Humanos , Inmunoensayo/métodos , Aprendizaje Automático , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/análisis
8.
J Control Release ; 340: 209-220, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34740725

RESUMEN

Vaccines not requiring cold-chain storage/distribution and suitable for needle-free delivery are urgently needed. Pulmonary administration is one of the most promising non-parenteral routes for vaccine delivery. Through a multi-component excipient and spray-drying approach, we engineered highly respirable dry-powder vaccine particles containing a three-fold repeated peptide epitope derived from human papillomavirus (HPV16) minor capsid protein L2 displayed on Pyrococcus furious thioredoxin as antigen. A key feature of our engineering approach was the use of the amphiphilic endotoxin derivative glucopyranosyl lipid A (GLA) as both a coating agent enhancing particle de-aggregation and respirability as well as a built-in immune-adjuvant. Following an extensive characterization of the in vitro aerodynamic performance, lung deposition was verified in vivo by intratracheal administration in mice of a vaccine powder containing a fluorescently labeled derivative of the antigen. This was followed by a short-term immunization study that highlighted the ability of the GLA-adjuvanted vaccine powder to induce an anti-L2 systemic immune response comparable to (or even better than) that of the subcutaneously administered liquid-form vaccine. Despite the very short-term immunization conditions employed for this preliminary vaccination experiment, the intratracheally administered dry-powder, but not the subcutaneously injected liquid-state, vaccine induced consistent HPV neutralizing responses. Overall, the present data provide proof-of-concept validation of a new formulation design to produce a dry-powder vaccine that may be easily transferred to other antigens.


Asunto(s)
Infecciones por Papillomavirus , Vacunas , Animales , Excipientes , Lípido A , Lubricantes , Ratones , Ratones Endogámicos BALB C , Infecciones por Papillomavirus/prevención & control , Polvos
9.
Front Immunol ; 12: 730051, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566990

RESUMEN

There is an urgent need for new generation anti-SARS-Cov-2 vaccines in order to increase the efficacy of immunization and its broadness of protection against viral variants that are continuously arising and spreading. The effect of variants on protective immunity afforded by vaccination has been mostly analyzed with regard to B cell responses. This analysis revealed variable levels of cross-neutralization capacity for presently available SARS-Cov-2 vaccines. Despite the dampened immune responses documented for some SARS-Cov-2 mutations, available vaccines appear to maintain an overall satisfactory protective activity against most variants of concern (VoC). This may be attributed, at least in part, to cell-mediated immunity. Indeed, the widely multi-specific nature of CD8 T cell responses should allow to avoid VoC-mediated viral escape, because mutational inactivation of a given CD8 T cell epitope is expected to be compensated by the persistent responses directed against unchanged co-existing CD8 epitopes. This is particularly relevant because some immunodominant CD8 T cell epitopes are located within highly conserved SARS-Cov-2 regions that cannot mutate without impairing SARS-Cov-2 functionality. Importantly, some of these conserved epitopes are degenerate, meaning that they are able to associate with different HLA class I molecules and to be simultaneously presented to CD8 T cell populations of different HLA restriction. Based on these concepts, vaccination strategies aimed at potentiating the stimulatory effect on SARS-Cov-2-specific CD8 T cells should greatly enhance the efficacy of immunization against SARS-Cov-2 variants. Our review recollects, discusses and puts into a translational perspective all available experimental data supporting these "hot" concepts, with special emphasis on the structural constraints that limit SARS-CoV-2 S-protein evolution and on potentially invariant and degenerate CD8 epitopes that lend themselves as excellent candidates for the rational development of next-generation, CD8 T-cell response-reinforced, COVID-19 vaccines.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Epítopos de Linfocito T/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Humanos
10.
PLoS Pathog ; 16(9): e1008827, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32886721

RESUMEN

Global burden of cervical cancer, the most common cause of mortality caused by human papillomavirus (HPV), is expected to increase during the next decade, mainly because current alternatives for HPV vaccination and cervical cancer screening programs are costly to be established in low-and-middle income countries. Recently, we described the development of the broadly protective, thermostable vaccine antigen Trx-8mer-OVX313 based on the insertion of eight different minor capsid protein L2 neutralization epitopes into a thioredoxin scaffold from the hyperthermophilic archaeon Pyrococcus furiosus and conversion of the resulting antigen into a nanoparticle format (median radius ~9 nm) upon fusion with the heptamerizing OVX313 module. Here we evaluated whether the engineered thioredoxin scaffold, in addition to humoral immune responses, can induce CD8+ T-cell responses upon incorporation of MHC-I-restricted epitopes. By systematically examining the contribution of individual antigen modules, we demonstrated that B-cell and T-cell epitopes can be combined into a single antigen construct without compromising either immunogenicity. While CD8+ T-cell epitopes had no influence on B-cell responses, the L2 polytope (8mer) and OVX313-mediated heptamerization of the final antigen significantly increased CD8+ T-cell responses. In a proof-of-concept experiment, we found that vaccinated mice remained tumor-free even after two consecutive tumor challenges, while unvaccinated mice developed tumors. A cost-effective, broadly protective vaccine with both prophylactic and therapeutic properties represents a promising option to overcome the challenges associated with prevention and treatment of HPV-caused diseases.


Asunto(s)
Antígenos de Neoplasias , Antígenos Virales , Proteínas Arqueales , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer , Inmunidad Celular/efectos de los fármacos , Nanopartículas , Papillomaviridae , Vacunas contra Papillomavirus , Pyrococcus furiosus/química , Tiorredoxinas , Neoplasias del Cuello Uterino/inmunología , Animales , Antígenos de Neoplasias/química , Antígenos de Neoplasias/farmacología , Antígenos Virales/química , Antígenos Virales/farmacología , Proteínas Arqueales/química , Proteínas Arqueales/farmacología , Linfocitos T CD8-positivos/patología , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/farmacología , Epítopos de Linfocito B/química , Epítopos de Linfocito B/farmacología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/farmacología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Nanopartículas/uso terapéutico , Papillomaviridae/química , Papillomaviridae/inmunología , Vacunas contra Papillomavirus/química , Vacunas contra Papillomavirus/farmacología , Tiorredoxinas/química , Tiorredoxinas/farmacología , Neoplasias del Cuello Uterino/virología
11.
Mol Biotechnol ; 62(1): 43-55, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31720928

RESUMEN

Single-domain antigen-binding fragments of camelid antibodies, known as VHHs or nanobodies, are widely used affinity reagents. However, their production involving animal immunization is time- and resource-intensive. Starting from a sequence dataset of llama VHHs, we designed a novel scaffold, based on conserved framework sequences, suitable for bacterial nanobody expression and synthetic library construction. The consensus scaffold was validated by grafting the CDRs from two known nanobodies. While maintaining their binding properties, the two chimeric nanobodies showed higher levels of expression and solubility in E. coli when compared to the corresponding wild types. A proof-of-concept synthetic combinatorial library, suitable for ribosome display (RD) selection, was obtained by encoding three randomized complementarity determining regions within the consensus framework. The library, made of linear DNA fragments, has an estimated complexity of > 1012 that is three orders of magnitude higher than common phage display libraries. The bacterial expression of several library clones showed a high production of soluble recombinant proteins. The high complexity of the library, confirmed by sequencing of a subset of clones, as well as a preliminary RD selection of a maltose binding protein binder, indicated this approach as a starting point in the construction of synthetic combinatorial libraries to be used as animal-free tools for the low-cost selection of target-specific nanobodies.


Asunto(s)
Camelus/inmunología , Ribosomas/metabolismo , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Secuencia de Aminoácidos/genética , Animales , Afinidad de Anticuerpos/genética , Camelus/genética , Clonación Molecular , Evolución Molecular Dirigida , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Biblioteca de Péptidos , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
12.
Sci Rep ; 8(1): 13173, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158542

RESUMEN

A correction to this article has been published and is linked from the HTML and the PDF versions of this paper. The error has been fixed in the paper.

13.
J Virol ; 92(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29212932

RESUMEN

The amino terminus of the human papillomavirus (HPV) minor capsid protein L2 contains a major cross-neutralization epitope which provides the basis for the development of a broadly protecting HPV vaccine. A wide range of protection against different HPV types would eliminate one of the major drawbacks of the commercial, L1-based prophylactic vaccines. Previously, we have reported that insertion of the L2 epitope into a scaffold composed of bacterial thioredoxin protein generates a potent antigen inducing comprehensive protection against different animal and human papillomaviruses. We also reported, however, that although protection is broad, some oncogenic HPV types escape the neutralizing antibody response, if L2 epitopes from single HPV types are used as immunogen. We were able to compensate for this by applying a mix of thioredoxin proteins carrying L2 epitopes from HPV16, -31, and -51. As the development of a cost-efficient HPV prophylactic vaccines is one of our objectives, this approach is not feasible as it requires the development of multiple good manufacturing production processes in combination with a complex vaccine formulation. Here, we report the development of a thermostable thioredoxin-based single-peptide vaccine carrying an L2 polytope of up to 11 different HPV types. The L2 polytope antigens have excellent abilities in respect to broadness of protection and robustness of induced immune responses. To further increase immunogenicity, we fused the thioredoxin L2 polytope antigen with a heptamerization domain. In the final vaccine design, we achieve protective responses against all 14 oncogenic HPV types that we have analyzed plus the low-risk HPVs 6 and 11 and a number of cutaneous HPVs.IMPORTANCE Infections by a large number of human papillomaviruses lead to malignant and nonmalignant disease. Current commercial vaccines based on virus-like particles (VLPs) effectively protect against some HPV types but fail to do so for most others. Further, only about a third of all countries have access to the VLP vaccines. The minor capsid protein L2 has been shown to contain so-called neutralization epitopes within its N terminus. We designed polytopes comprising the L2 epitope amino acids 20 to 38 of up to 11 different mucosal HPV types and inserted them into the scaffold of thioredoxin derived from a thermophile archaebacterium. The antigen induced neutralizing antibody responses in mice and guinea pigs against 26 mucosal and cutaneous HPV types. Further, addition of a heptamerization domain significantly increased the immunogenicity. The final vaccine design comprising a heptamerized L2 8-mer thioredoxin single-peptide antigen with excellent thermal stability might overcome some of the limitations of the current VLP vaccines.


Asunto(s)
Proteínas de la Cápside/inmunología , Proteínas Oncogénicas Virales/inmunología , Papillomaviridae , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/administración & dosificación , Tiorredoxinas/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Protección Cruzada , Epítopos/inmunología , Femenino , Cobayas , Células HEK293 , Humanos , Inyecciones Intramusculares , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Papillomaviridae/clasificación , Vacunas de Partículas Similares a Virus/administración & dosificación
14.
Sci Rep ; 7(1): 18000, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269879

RESUMEN

Vaccines targeting the human papillomavirus (HPV) minor capsid protein L2 are emerging as chemico-physically robust and broadly protective alternatives to the current HPV (L1-VLP) vaccines. We have previously developed a trivalent L2 vaccine prototype exploiting Pyrococcus furiosus thioredoxin (PfTrx) as a thermostable scaffold for the separate presentation of three distinct HPV L2(20-38) epitopes. With the aim of achieving a highly immunogenic, yet simpler and more GMP-production affordable formulation, we report here on a novel thermostable nanoparticle vaccine relying on genetic fusion of PfTrx-L2 with the heptamerizing coiled-coil polypeptide OVX313. A prototype HPV16 monoepitope version of this nanoparticle vaccine (PfTrx-L2-OVX313; median radius: 8.6 ± 1.0 nm) proved to be approximately 10-fold more immunogenic and with a strikingly enhanced cross-neutralization capacity compared to its monomeric counterpart. Vaccine-induced (cross-)neutralizing responses were further potentiated in a multiepitope derivative displaying eight different L2(20-38) epitopes, which elicited neutralizing antibodies against 10 different HPVs including three viral types not represented in the vaccine. Considering the prospective safety of the PfTrx scaffold and of the OVX313 heptamerization module, PfTrx-OVX313 nanoparticles lend themselves as robust L2-based immunogens with a high translational potential as a 3rd generation HPV vaccine, but also as a novel and extremely versatile peptide-antigen presentation platform.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Proteínas de la Cápside/inmunología , Nanopartículas , Papillomaviridae/inmunología , Vacunas contra Papillomavirus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Epítopos/inmunología , Femenino , Ratones , Pruebas de Neutralización , Tiorredoxinas
15.
Sci Rep ; 7(1): 7628, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28794466

RESUMEN

An increasing number of esterases is being revealed by (meta) genomic sequencing projects, but few of them are functionally/structurally characterized, especially enzymes of fungal origin. Starting from a three-member gene family of secreted putative "lipases/esterases" preferentially expressed in the symbiotic phase of the mycorrhizal fungus Tuber melanosporum ("black truffle"), we show here that these enzymes (TmelEST1-3) are dimeric, heat-resistant carboxylesterases capable of hydrolyzing various short/medium chain p-nitrophenyl esters. TmelEST2 was the most active (kcat = 2302 s-1 for p-nitrophenyl-butyrate) and thermally stable (T50 = 68.3 °C), while TmelEST3 was the only one displaying some activity on tertiary alcohol esters. X-ray diffraction analysis of TmelEST2 revealed a classical α/ß hydrolase-fold structure, with a network of dimer-stabilizing intermolecular interactions typical of archaea esterases. The predicted structures of TmelEST1 and 3 are overall quite similar to that of TmelEST2 but with some important differences. Most notably, the much smaller volume of the substrate-binding pocket and the more acidic electrostatic surface profile of TmelEST1. This was also the only TmelEST capable of hydrolyzing feruloyl-esters, suggestinng a possible role in root cell-wall deconstruction during symbiosis establishment. In addition to their potential biotechnological interest, TmelESTs raise important questions regarding the evolutionary recruitment of archaea-like enzymes into mesophilic subterranean fungi such as truffles.


Asunto(s)
Ascomicetos/enzimología , Ascomicetos/fisiología , Hidrolasas de Éster Carboxílico/metabolismo , Micorrizas/enzimología , Micorrizas/fisiología , Simbiosis , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Dominio Catalítico , Estabilidad de Enzimas , Calor , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Electricidad Estática , Especificidad por Sustrato , Difracción de Rayos X
16.
Protein Expr Purif ; 129: 150-157, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27133916

RESUMEN

Internal grafting of designed peptides to scaffold proteins is a valuable strategy for a variety of applications including recombinant peptide antigen construction. A peptide epitope from human papillomavirus (HPV) minor capsid protein L2 displayed on thioredoxin (Trx) has been validated preclinically as a broadly protective and low-cost alternative HPV vaccine. Focusing on thioredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus (PfTrx) as a scaffold, we have constructed a modified Pichia pastoris expression vector and used a PfTrx fusion derivative containing three tandemly repeated copies of a 19 amino acids peptide epitope from HPV-L2 for expression optimization and biochemical-immunological characterization of the Pichia-produced PfTrx-L2 antigen. We show that PfTrx-L2 is produced at high levels (up to 100 mg from a 100 ml starting culture using a multi-cycle induction protocol) and secreted into the culture medium as a highly enriched (>70% pure), non-glycosylated polypeptide that can be purified to homogeneity in a single step. Oxidation and aggregation state, thermal stability and immunogenicity of the endotoxin-free PfTrx-L2 antigen produced in P. pastoris were tested and found to be identical to those of the same antigen produced in Escherichia coli. Secretory production of endotoxin-free PfTrx-peptides in P. pastoris represents a cost- and time-effective alternative to E. coli production. Specifically designed for peptide antigens, the PfTrx-expression vector and conditions described herein are easily transferable to a variety of applications centred on the use of structurally constrained bioactive peptides as immune as well as target-specific binder reagents.


Asunto(s)
Proteínas Arqueales , Proteínas de la Cápside , Papillomaviridae/genética , Pichia/metabolismo , Pyrococcus furiosus/genética , Tiorredoxinas , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Proteínas Arqueales/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/aislamiento & purificación , Proteínas de la Cápside/metabolismo , Calor , Humanos , Pichia/genética , Pyrococcus furiosus/enzimología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/aislamiento & purificación , Tiorredoxinas/metabolismo
17.
FEMS Microbiol Ecol ; 92(12)2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27604252

RESUMEN

Ulcerative colitis (UC) is associated with a substantial alteration of specific gut commensals, some of which may be involved in microbiota-mediated protection. In this study, microbiota cataloging of UC patients by 16S rRNA microbial profiling revealed a marked reduction of bifidobacteria, in particular the Bifidobacterium bifidum species, thus suggesting that this taxon plays a biological role in the aetiology of UC. We investigated this further through an in vivo trial by testing the effects of oral treatment with B. bifidum PRL2010 in a wild-type murine colitis model. TNBS-treated mice receiving 10(9) cells of B. bifidum PRL2010 showed a marked reduction of all colitis-associated histological indices as well as maintenance of mucosal integrity as it was shown by the increase in the expression of many tight junction-encoding genes. The protective role of B. bifidum PRL2010, as well as its sortase-dependent pili, appears to be established through the induction of an innate immune response of the host. These results highlight the importance of B. bifidum as a microbial biomarker for UC, revealing its role in protection against experimentally induced colitis.


Asunto(s)
Bifidobacterium/aislamiento & purificación , Colitis Ulcerosa/microbiología , Disbiosis/microbiología , Fimbrias Bacterianas/inmunología , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/microbiología , Animales , Bifidobacterium/genética , Bifidobacterium/inmunología , Biomarcadores , Colitis Ulcerosa/inducido químicamente , Femenino , Microbioma Gastrointestinal/genética , Humanos , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos BALB C , Probióticos , ARN Ribosómico 16S/genética , Linfocitos T/inmunología
18.
Sci Rep ; 6: 25165, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-27121330

RESUMEN

Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant.


Asunto(s)
Ascomicetos/genética , Ascomicetos/metabolismo , Genes Esenciales , Oxidorreductasas/metabolismo , Azufre/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional
19.
Methods Mol Biol ; 1348: 137-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26424270

RESUMEN

Fusion to carrier proteins is an effective strategy for stabilizing and providing immunogenicity to peptide epitopes. This is commonly achieved by cross-linking of chemically synthesized peptides to carrier proteins. An alternative approach is internal grafting of selected peptide epitopes to a scaffold protein via double stranded-oligonucleotide insertion or gene synthesis, followed by recombinant expression of the resulting chimeric polypeptide. The scaffold protein should confer immunogenicity to the stabilized and structurally constrained peptide, but also afford easy production of the antigen in recombinant form. A macromolecular scaffold that meets the above criteria is the redox protein thioredoxin, especially bacterial thioredoxin. Here we describe our current methodology for internal grafting of selected peptide epitopes to thioredoxin as tandemly arranged multipeptide repeats ("Thioredoxin Displayed Multipeptide Immunogens"), bacterial expression and purification of the recombinant thioredoxin-multipeptide fusion proteins and their use as antigens for the production of anti-peptide antibodies for prophylactic vaccine as well as diagnostic purposes.


Asunto(s)
Antígenos/inmunología , Proteínas Portadoras , Epítopos/inmunología , Tiorredoxinas , Antígenos/química , Antígenos/genética , Antígenos/aislamiento & purificación , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Mapeo Epitopo , Epítopos/química , Epítopos/genética , Epítopos/aislamiento & purificación , Expresión Génica , Proteínas Recombinantes de Fusión , Tiorredoxinas/genética , Tiorredoxinas/inmunología
20.
Cancer Prev Res (Phila) ; 8(10): 932-41, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26170394

RESUMEN

Current prophylactic virus-like particle (VLP) human papillomavirus (HPV) vaccines are based on the L1 major capsid protein and provide robust but virus type-restricted protection. Moreover, VLP vaccines have a high production cost, require cold-chain storage, and are thus not readily implementable in developing countries, which endure 85% of the cervical cancer-related death burden worldwide. In contrast with L1, immunization with minor capsid protein L2 elicits broad cross-neutralization, and we previously showed that insertion of a peptide spanning amino acids 20-38 of L2 into bacterial thioredoxin (Trx) greatly enhances its immunogenicity. Building on this finding, we use, here, four different neutralization assays to demonstrate that low doses of a trivalent Trx-L2 vaccine, incorporating L2(20-38) epitopes from HPV16, HPV31 and HPV51, and formulated in a human-compatible adjuvant, induce broadly protective responses. Specifically, we show that this vaccine, which uses a far-divergent archaebacterial thioredoxin as scaffold and is amenable to an easy one-step thermal purification, induces robust cross-neutralization against 12 of the 13 known oncogenic HPV types. Immune performance measured with two different in vitro neutralization assays was corroborated by the results of mouse cervico-vaginal challenge and passive transfer experiments indicating robust cross-protection also in vivo. Altogether, our results attest to the potential of Trx-L2 as a thermostable second-generation HPV vaccine particularly well suited for low-resource countries.


Asunto(s)
Proteínas de la Cápside/inmunología , Protección Cruzada/inmunología , Proteínas Oncogénicas Virales/inmunología , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Modelos Animales de Enfermedad , Femenino , Cobayas , Papillomavirus Humano 31 , Humanos , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Infecciones por Papillomavirus/virología , Tiorredoxinas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...