Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Hum Pathol ; 142: 68-80, 2023 Dec.
Article En | MEDLINE | ID: mdl-37977512

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive type of cancer with an overall 5-year survival of around 10 %. New prognostic tools to stratify patients are needed. Our main aim was to evaluate the prognostic value of overall copy number variation (CNV) burden in surgically treated PDAC. DNA extracted from 108 surgical PDAC specimens was examined to collect data on the genome-wide DNA methylation status of >850,000 CpG sites in promoter, gene body, and enhancer regions (Illumina Infinium Methylation EPIC BeadChip Kit). CNV profiles were obtained and all PDACs were stratified into one of three groups: Low, moderate, or high overall CNV burden. Tumors histologically showing a dominant conventional and/or tubulopapillary pattern in 60 %-100 % and 0-59 % were categorized as Group A and Group B as per Kalimuthu. We also performed targeted next-generation sequencing (NGS) and immunohistochemistry. High overall CNV burden held independent negative prognostic value with poor survival (HR 4.01 (95%CI 1.96-8.19), p = 0.00014) and was more frequent in Group B (p = 0.0003). Most frequent chromosomal arm-level aberrations were gains of 8q (29 %) and 1q (19 %) and losses of 17p (55 %), 18q (43 %), 6q (37 %), 9p (36 %), 6p (26 %), 19p (26 %), and 8p (25 %). Most frequent mutations found were in KRAS (95 %), TP53 (62 %), CDKN2A (24 %), SMAD4 (23 %), ATM (9 %), ARID1A (7 %), RNF43 (7 %), GNAS (6 %), and KDM6A (6 %). Group A PDACs showed more frequently KRAS variants other than Gly12Val and Gly12Asp (p = 0.012). Our data indicate that overall CNV burden using genome-wide methylation profiling may be a useful prognostic tool in surgically treated PDAC. Importantly, our approach, using data from genome-wide methylation profiling for analysis of overall CNV burden, can be performed on formalin-fixed and paraffin embedded PDAC tissues. Future studies should examine the prognostic value of overall CNV burden in unresectable PDAC.


Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , DNA Copy Number Variations , Prognosis , Proto-Oncogene Proteins p21(ras)/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/surgery , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/surgery , Chromosome Aberrations , Mutation , Adenocarcinoma/pathology , DNA Methylation , Pancreatic Neoplasms
2.
Front Oncol ; 11: 739255, 2021.
Article En | MEDLINE | ID: mdl-34888235

BACKGROUND: Paraganglioma occurs rarely in the sellar/parasellar region. Here, we report a patient with malignant paraganglioma with primary sellar location with unusual genetic and imaging features. CASE PRESENTATION: A 31-year-old male presented with mild hypertension, headache, nausea, and vomiting. A sellar/parasellar tumor mass was revealed by magnetic resonance imaging (MRI), while an endocrine work-up found partial hypopituitarism, suggesting that it was a non-functioning pituitary tumor. Antihypertensive therapy and hormone replacement were initiated. Tumor reduction was achieved with transsphenoidal neurosurgery. However, histological diagnosis was not possible due to extensive tissue necrosis. After 4 years of stable disease, the residual tumor showed re-growth requiring gamma knife radiosurgery. Four years after the radiosurgery, MRI showed a significant tumor progression leading to a second neurosurgery. This time, pathological and immunohistochemical findings revealed paraganglioma. Plasma levels of metanephrine and normetanephrine were normal. A gene sequencing panel performed on DNA extracted from blood excluded germline mutations in 17 susceptibility genes. The patient developed new tumor masses in the neck, and the third surgery was performed. Immunohistochemistry demonstrated lack of ATRX (alpha thalassemia/mental retardation syndrome X-linked) protein in tumor cells, indicating an ATRX gene mutation. Molecular genetic analysis performed on tumor DNA revealed a combination of ATRX and TP53 gene abnormalities; this was not previously reported in paraganglioma. MRI and 68Ga-DOTANOC PET/CT revealed the full extent of the disease. Therapy with somatostatin LAR and 177Lu-DOTATATE Peptide Receptor Radionuclide Therapy (PRRT) was initiated. CONCLUSION: Although rare, paraganglioma should be considered in the differential diagnosis of sellar/parasellar tumor lesions, even in the absence of typical imaging features. ATRX gene mutation in paraganglioma is an early predictor of malignant behavior and a potential novel therapeutic marker when pharmacological therapy targeting mutated ATRX becomes available.

3.
Sci Rep ; 11(1): 6066, 2021 03 16.
Article En | MEDLINE | ID: mdl-33727611

Glioblastoma multiforme is the most common primary brain tumor and among the most lethal types of cancer. Several mono-target small molecule-inhibitors have been investigated as novel therapeutics, thus far with poor success. In this study we investigated the anticancer effects of SB747651A, a multi-target small-molecule inhibitor, in three well characterized patient-derived glioblastoma spheroid cultures and a murine orthotopic xenograft model. Concentrations of 5-10 µM SB747651A reduced cell proliferation, spheroid formation, migration and chemoresistance, while apoptotic cell death increased. Investigation of oncogenic kinase signaling showed decreased phosphorylation levels of mTOR, CREB, GSK3 and GYS1 leading to altered glycogen metabolism and formation of intracellular reactive oxygen species. Expression levels of cancer stemness marker SOX2 were reduced in treated tumor cells and SB747651A treatment significantly prolonged survival of mice with intracranial glioblastoma xenografts, while no adverse effects were observed in vivo at doses of 25 mg/kg administered 5 days/week for 8 weeks. These findings suggest that SB747651A has anticancer effects in glioblastoma. The cancer-related pathophysiological mechanisms targeted by SB747651A are shared among many types of cancer; however, an in-depth clarification of the mechanisms of action in cancer cells is important before further potential application of SB747651A as an anticancer agent can be considered.


Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Glioblastoma/drug therapy , Oxadiazoles/pharmacology , Animals , Cell Line, Tumor , Female , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Proteins/metabolism , Phosphorylation/drug effects , Xenograft Model Antitumor Assays
4.
J Clin Endocrinol Metab ; 106(4): 1183-1194, 2021 03 25.
Article En | MEDLINE | ID: mdl-33106857

CONTEXT: Aggressive pituitary tumors (APTs) are characterized by unusually rapid growth and lack of response to standard treatment. About 1% to 2% develop metastases being classified as pituitary carcinomas (PCs). For unknown reasons, the corticotroph tumors are overrepresented among APTs and PCs. Mutations in the alpha thalassemia/mental retardation syndrome X-linked (ATRX) gene, regulating chromatin remodeling and telomere maintenance, have been implicated in the development of several cancer types, including neuroendocrine tumors. OBJECTIVE: To study ATRX protein expression and mutational status of the ATRX gene in APTs and PCs. DESIGN: We investigated ATRX protein expression by using immunohistochemistry in 30 APTs and 18 PCs, mostly of Pit-1 and T-Pit cell lineage. In tumors lacking ATRX immunolabeling, mutational status of the ATRX gene was explored. RESULTS: Nine of the 48 tumors (19%) demonstrated lack of ATRX immunolabelling with a higher proportion in patients with PCs (5/18; 28%) than in those with APTs (4/30;13%). Lack of ATRX was most common in the corticotroph tumors, 7/22 (32%), versus tumors of the Pit-1 lineage, 2/24 (8%). Loss-of-function ATRX mutations were found in all 9 ATRX immunonegative cases: nonsense mutations (n = 4), frameshift deletions (n = 4), and large deletions affecting 22-28 of the 36 exons (n = 3). More than 1 ATRX gene defect was identified in 2 PCs. CONCLUSION: ATRX mutations occur in a subset of APTs and are more common in corticotroph tumors. The findings provide a rationale for performing ATRX immunohistochemistry to identify patients at risk of developing aggressive and potentially metastatic pituitary tumors.


ACTH-Secreting Pituitary Adenoma/genetics , Adenoma/genetics , Carcinoma/genetics , Pituitary Neoplasms/genetics , X-linked Nuclear Protein/genetics , ACTH-Secreting Pituitary Adenoma/epidemiology , ACTH-Secreting Pituitary Adenoma/pathology , Adenoma/epidemiology , Adenoma/pathology , Adolescent , Adult , Aged , Carcinoma/epidemiology , Carcinoma/pathology , Cohort Studies , Corticotrophs/metabolism , Corticotrophs/pathology , Europe/epidemiology , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Mutation , Neoplasm Invasiveness/genetics , Pituitary Neoplasms/epidemiology , Pituitary Neoplasms/pathology , Young Adult
5.
Sci Rep ; 10(1): 9285, 2020 06 09.
Article En | MEDLINE | ID: mdl-32518380

Most glioblastoma patients have a dismal prognosis, although some survive several years. However, only few biomarkers are available to predict the disease course. EGR1 and EGR3 have been linked to glioblastoma stemness and tumour progression, and this study aimed to investigate their spatial expression and prognostic value in gliomas. Overall 207 gliomas including 190 glioblastomas were EGR1/EGR3 immunostained and quantified. A cohort of 21 glioblastomas with high P53 expression and available tissue from core and periphery was stained with double-immunofluorescence (P53-EGR1 and P53-EGR3) and quantified.EGR1 expression increased with WHO-grade, and declined by 18.9% in the tumour periphery vs. core (P = 0.01), while EGR3 expression increased by 13.8% in the periphery vs. core (P = 0.04). In patients with high EGR1 expression, 83% had methylated MGMT-promoters, while all patients with low EGR1 expression had un-methylated MGMT-promoters. High EGR3 expression in MGMT-methylated patients was associated with poor survival (HR = 1.98; 95%CI 1.22-3.22; P = 0.006), while EGR1 high/EGR3 high, was associated with poor survival vs. EGR1 high/EGR3 low (HR = 2.11; 95%CI 1.25-3.56; P = 0.005). EGR1 did not show prognostic value, but could be involved in MGMT-methylation. Importantly, EGR3 may be implicated in cell migration, while its expression levels seem to be prognostic in MGMT-methylated patients.


Biomarkers, Tumor/genetics , Early Growth Response Protein 1/genetics , Early Growth Response Protein 3/genetics , Glioblastoma/genetics , Glioblastoma/pathology , Cell Movement/genetics , DNA Methylation/genetics , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Disease Progression , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 3/metabolism , Female , Glioblastoma/diagnosis , Humans , Male , Prognosis , Promoter Regions, Genetic/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
6.
Brain Struct Funct ; 225(2): 805-816, 2020 Mar.
Article En | MEDLINE | ID: mdl-32072250

Evidence suggests that extracellular matrix molecules of perivascular basal laminae help orchestrate the molecular assemblies at the gliovascular interface. Specifically, laminin and agrin are thought to tether the dystrophin-associated protein (DAP) complex to the astrocytic basal lamina. This complex includes α-syntrophin (α-Syn), which is believed to anchor aquaporin-4 (AQP4) to astrocytic endfoot membrane domains. We have previously shown that the size of the perivascular AQP4 pool differs considerably between brain regions in an α-Syn-dependent manner. Also, both AQP4 and α-Syn occur at higher densities in endfoot membrane domains facing pericytes than in endfoot membrane domains facing endothelial cells. The heterogeneous distribution of AQP4 at the regional and capillary level has been attributed to a direct interaction between AQP4 and α-Syn. This would be challenged (1) if the microdistributions of laminin and agrin fail to align with those of DAP and AQP4 and (2) if targeted deletion of α-Syn leads to a loss of laminin and/or agrin. Here, we provide the first detailed and quantitative analysis of laminin and agrin in brain basal laminae of mice. We show that the microdistributions of these molecules vary in a fashion that is well aligned with the previously reported microdistribution of AQP4. We also demonstrate that the expression patterns of laminin and agrin are insensitive to targeted deletion of α-Syn, suggesting that α-Syn deletion affects AQP4 directly and not indirectly via laminin or agrin. These data fill remaining voids in the current model of how key molecules are assembled and tethered at the gliovascular interface.


Agrin/metabolism , Brain/blood supply , Brain/metabolism , Extracellular Matrix/metabolism , Laminin/metabolism , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Capillaries/metabolism , Extracellular Matrix Proteins/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Muscle Proteins/genetics , Muscle Proteins/metabolism , RNA, Messenger/metabolism
7.
Am J Surg Pathol ; 41(9): 1238-1246, 2017 Sep.
Article En | MEDLINE | ID: mdl-28719461

Differential diagnosis based on morphology and immunohistochemistry between a clinically nonfunctioning pituitary neuroendocrine tumor (NET)/pituitary adenoma and a primary or secondary NET of nonpituitary origin in the sellar region may be difficult. Serotonin, a frequently expressed marker in the NETs, has not been systematically evaluated in pituitary NETs. Although mutations in ATRX or DAXX have been reported in a significant proportion of pancreatic NETs, the mutational status of ATRX and DAXX and their possible pathogenetic role in pituitary NETs are unknown. Facing a difficult diagnostic case of an invasive serotonin and adrenocorticotroph hormone immunoreactive NET in the sellar region, we explored the immunohistochemical expression of serotonin, ATRX, and DAXX in a large series of pituitary endocrine tumors of different types from 246 patients and in 2 corticotroph carcinomas. None of the pituitary tumors expressed serotonin, suggesting that serotonin immunoreactive sellar tumors represent primary or secondary NETs of nonpituitary origin. Normal expression of ATRX and DAXX in pituitary tumors suggests that ATRX and DAXX do not play a role in the pathogenesis of pituitary endocrine tumors that remain localized to the sellar and perisellar region. A lack of ATRX or DAXX in a sellar NET suggests a nonpituitary NET, probably of pancreatic origin. One of the 2 examined corticotroph carcinomas, however, demonstrated negative ATRX immunolabeling due to an ATRX gene mutation. Further studies on a larger cohort of pituitary carcinomas are needed to clarify whether ATRX mutations may contribute to the metastatic potential in a subset of pituitary NETs.


Adaptor Proteins, Signal Transducing/biosynthesis , Adenoma/metabolism , Biomarkers, Tumor/biosynthesis , DNA Helicases/biosynthesis , Neuroendocrine Tumors/diagnosis , Nuclear Proteins/biosynthesis , Pituitary Neoplasms/metabolism , Sella Turcica , Serotonin/biosynthesis , Skull Neoplasms/metabolism , Adaptor Proteins, Signal Transducing/analysis , Adenoma/diagnosis , Adult , Aged , Biomarkers, Tumor/analysis , Co-Repressor Proteins , DNA Helicases/analysis , Diagnosis, Differential , Female , Humans , Immunohistochemistry , Male , Molecular Chaperones , Nuclear Proteins/analysis , Pituitary Neoplasms/diagnosis , Serotonin/analysis , Skull Neoplasms/diagnosis , X-linked Nuclear Protein
8.
Brain Struct Funct ; 222(4): 1753-1766, 2017 May.
Article En | MEDLINE | ID: mdl-27629271

Perivascular endfeet of astrocytes are enriched with aquaporin-4 (AQP4)-a water channel that is critically involved in water transport at the brain-blood interface and that recently was identified as a key molecule in a system for waste clearance. The factors that determine the size of the perivascular AQP4 pool remain to be identified. Here we show that the size of this pool differs considerably between brain regions, roughly mirroring regional differences in Aqp4 mRNA copy numbers. We demonstrate that a targeted deletion of α-syntrophin-a member of the dystrophin complex responsible for AQP4 anchoring-removes a substantial and fairly constant proportion (79-94 %) of the perivascular AQP4 pool across the central nervous system (CNS). Quantitative immunogold analyses of AQP4 and α-syntrophin in perivascular membranes indicate that there is a fixed stoichiometry between these two molecules. Both molecules occur at higher densities in endfoot membrane domains facing pericytes than in endfoot membrane domains facing endothelial cells. Our data suggest that irrespective of region, endfoot targeting of α-syntrophin is the single most important factor determining the size of the perivascular AQP4 pool and hence the capacity for water transport at the brain-blood interface.


Aquaporin 4/metabolism , Brain/blood supply , Brain/metabolism , Animals , Astrocytes/metabolism , Calcium-Binding Proteins/metabolism , Capillaries/metabolism , Male , Membrane Proteins/metabolism , Mice, Inbred C57BL , Muscle Proteins/metabolism , Pericytes/metabolism
...