Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Fam Med ; 56(3): 200-201, 2024 Mar.
Article En | MEDLINE | ID: mdl-38467008
2.
Am J Transplant ; 23(8): 1102-1115, 2023 08.
Article En | MEDLINE | ID: mdl-36878433

Damage to the gastrointestinal tract following allogeneic hematopoietic stem cell transplantation is a significant contributor to the severity and perpetuation of graft-versus-host disease. In preclinical models and clinical trials, we showed that infusing high numbers of regulatory T cells reduces graft-versus-host disease incidence. Despite no change in in vitro suppressive function, transfer of ex vivo expanded regulatory T cells transduced to overexpress G protein-coupled receptor 15 or C-C motif chemokine receptor 9, specific homing receptors for colon or small intestine, respectively, lessened graft-versus-host disease severity in mice. Increased regulatory T cell frequency and retention within the gastrointestinal tissues of mice that received gut homing T cells correlated with lower inflammation and gut damage early post-transplant, decreased graft-versus-host disease severity, and prolonged survival compared with those receiving control transduced regulatory T cells. These data provide evidence that enforced targeting of ex vivo expanded regulatory T cells to the gastrointestinal tract diminishes gut injury and is associated with decreased graft-versus-host disease severity.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Mice , T-Lymphocytes, Regulatory , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Graft vs Host Disease/drug therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Intestine, Small , Inflammation
3.
Blood ; 141(11): 1337-1352, 2023 03 16.
Article En | MEDLINE | ID: mdl-36564052

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative option for patients with hematological disorders and bone marrow (BM) failure syndromes. Graft-versus-host disease (GVHD) remains a leading cause of morbidity posttransplant. Regulatory T cell (Treg) therapies are efficacious in ameliorating GVHD but limited by variable suppressive capacities and the need for a high therapeutic dose. Here, we sought to expand Treg in vivo by expressing an orthogonal interleukin 2 receptor ß (oIL-2Rß) that would selectively interact with oIL-2 cytokine and not wild-type (WT) IL-2. To test whether the orthogonal system would preferentially drive donor Treg expansion, we used a murine major histocompatibility complex-disparate GVHD model of lethally irradiated BALB/c mice given T cell-depleted BM from C57BL/6 (B6) mice alone or together with B6Foxp3+GFP+ Treg or oIL-2Rß-transduced Treg at low cell numbers that typically do not control GVHD with WT Treg. On day 2, B6 activated T cells (Tcons) were injected to induce GVHD. Recipients were treated with phosphate-buffered saline (PBS) or oIL-2 daily for 14 days, then 3 times weekly for an additional 14 days. Mice treated with oIL-2Rß Treg and oIL-2 compared with those treated with PBS had enhanced GVHD survival, in vivo selective expansion of Tregs, and greater suppression of Tcon expansion in secondary lymphoid organs and intestines. Importantly, oIL-2Rß Treg maintained graft-versus-tumor (GVT) responses in 2 distinct tumor models (A20 and MLL-AF9). These data demonstrate a novel approach to enhance the efficacy of Treg therapy in allo-HSCT using an oIL-2/oIL-2Rß system that allows for selective in vivo expansion of Treg leading to GVHD protection and GVT maintenance.


Graft vs Host Disease , Neoplasms , Animals , Mice , T-Lymphocytes, Regulatory , Interleukin-2/pharmacology , Mice, Inbred C57BL , Bone Marrow Transplantation , Cytokines , Graft vs Host Disease/prevention & control , Mice, Inbred BALB C
4.
J Immunother Cancer ; 10(12)2022 12.
Article En | MEDLINE | ID: mdl-36521930

Current Food and Drug Administration (FDA)-approved CD19-specific chimeric antigen receptor (CAR) T-cell therapies for B-cell malignancies are constitutively active and while efficacious, can cause morbidity and mortality. Their toxicities might be reduced if CAR T-cell activity was regulatable rather than constitutive. To test this, we compared the efficacies and morbidities of constitutively active (conventional) and regulatable (switchable) CAR (sCAR) T-cells specific for human CD19 (huCD19) in an immune-competent huCD19+ transgenic mouse model.Conventional CAR (CAR19) and sCAR T-cells were generated by retrovirally transducing C57BL/6 (B6) congenic T-cells with constructs encoding antibody-derived single chain Fv (sFv) fragments specific for huCD19 or a peptide neoepitope (PNE), respectively. Transduced T-cells were adoptively transferred into huCD19 transgenic hemizygous (huCD19Tg/0 ) B6 mice; healthy B-cells in these mice expressed huCD19Tg Prior to transfer, recipients were treated with a lymphodepleting dose of cyclophosphamide to enhance T-cell engraftment. In tumor therapy experiments, CAR19 or sCAR T-cells were adoptively transferred into huCD19Tg/0 mice bearing a syngeneic B-cell lymphoma engineered to express huCD19. To regulate sCAR T cell function, a switch protein was generated that contained the sCAR-specific PNE genetically fused to an anti-huCD19 Fab fragment. Recipients of sCAR T-cells were injected with the switch to link sCAR effector with huCD19+ target cells. Mice were monitored for survival, tumor burden (where appropriate), morbidity (as measured by weight loss and clinical scores), and peripheral blood lymphocyte frequency.CAR19 and sCAR T-cells functioned comparably regarding in vivo expansion and B-cell depletion. However, sCAR T-cells were better tolerated as evidenced by the recipients' enhanced survival, reduced weight loss, and improved clinical scores. Discontinuing switch administration allowed healthy B-cell frequencies to return to pretreatment levels.In our mouse model, sCAR T-cells killed huCD19+ healthy and malignant B-cells and were better tolerated than CAR19 cells. Our data suggest sCAR might be clinically superior to the current FDA-approved therapies for B-cell lymphomas due to the reduced acute and chronic morbidities and mortality, lower incidence and severity of side effects, and B-cell reconstitution on cessation of switch administration.


Antigens, CD19 , Lymphoma, B-Cell , United States , Humans , Mice , Animals , Mice, Inbred C57BL , T-Lymphocytes , Lymphoma, B-Cell/therapy , Disease Models, Animal , Mice, Transgenic , Morbidity , Weight Loss
5.
JCI Insight ; 7(17)2022 09 08.
Article En | MEDLINE | ID: mdl-35917188

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) efficacy is complicated by graft-versus-host disease (GVHD), a leading cause of morbidity and mortality. Regulatory T cells (Tregs) have shown efficacy in preventing GVHD. However, high Treg doses are often required, necessitating substantial ex vivo or in vivo expansion that may diminish suppressor function. To enhance in vivo suppressor function, murine Tregs were transduced to express an anti-human CD19 chimeric antigen receptor (hCAR19) and infused into lethally irradiated, hCD19-transgenic recipients for allo-HSCT. Compared with recipients receiving control transduced Tregs, those receiving hCAR19 Tregs had a marked decrease in acute GVHD lethality. Recipient hCD19 B cells and murine hCD19 TBL12-luciferase (TBL12luc) lymphoma cells were both cleared by allogeneic hCAR19 Tregs, which was indicative of graft-versus-tumor (GVT) maintenance and potentiation. Mechanistically, hCAR19 Tregs killed syngeneic hCD19+ but not hCD19- murine TBL12luc cells in vitro in a perforin-dependent, granzyme B-independent manner. Importantly, cyclophosphamide-treated, hCD19-transgenic mice given hCAR19 cytotoxic T lymphocytes without allo-HSCT experienced rapid lethality due to systemic toxicity that has been associated with proinflammatory cytokine release; in contrast, hCAR19 Treg suppressor function enabled avoidance of this severe complication. In conclusion, hCAR19 Tregs are a potentially novel and effective strategy to suppress GVHD without loss of GVT responses.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Neoplasms , Receptors, Chimeric Antigen , T-Lymphocytes, Regulatory , Animals , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Mice , Receptors, Antigen, T-Cell/metabolism , Transplantation, Homologous
6.
Front Immunol ; 13: 864748, 2022.
Article En | MEDLINE | ID: mdl-35493508

Regulatory T-cells (Treg) are critical for the maintenance of immune homeostasis and tolerance induction. While the immunosuppressive mechanisms of Treg have been extensively investigated for decades, the mechanisms responsible for Treg cytotoxicity and their therapeutic potential in regulating immune responses have been incompletely explored and exploited. Conventional cytotoxic T effector cells (Teffs) are known to be important for adaptive immune responses, particularly in the settings of viral infections and cancer. CD4+ and CD8+ Treg subsets may also share similar cytotoxic properties with conventional Teffs. Cytotoxic effector Treg (cyTreg) are a heterogeneous population in the periphery that retain the capacity to suppress T-cell proliferation and activation, induce cellular apoptosis, and migrate to tissues to ensure immune homeostasis. The latter can occur through several cytolytic mechanisms, including the Granzyme/Perforin and Fas/FasL signaling pathways. This review focuses on the current knowledge and recent advances in our understanding of cyTreg and their potential application in the treatment of human disease, particularly Graft-versus-Host Disease (GVHD).


Graft vs Host Disease , Humans , Immunotherapy , Perforin/metabolism , T-Lymphocytes, Cytotoxic , T-Lymphocytes, Regulatory
7.
Cell Mol Immunol ; 19(7): 820-833, 2022 07.
Article En | MEDLINE | ID: mdl-35581350

Regulatory T cells (Tregs) promote immune homeostasis by maintaining self-tolerance and regulating inflammatory responses. Under certain inflammatory conditions, Tregs can lose their lineage stability and function. Previous studies have reported that ex vivo exposure to retinoic acid (RA) enhances Treg function and stability. However, it is unknown how RA receptor signaling in Tregs influences these processes in vivo. Herein, we employed mouse models in which RA signaling is silenced by the expression of the dominant negative receptor (DN) RARα in all T cells. Despite the fact that DNRARα conventional T cells are hypofunctional, Tregs had increased CD25 expression, STAT5 pathway activation, mTORC1 signaling and supersuppressor function. Furthermore, DNRARα Tregs had increased inhibitory molecule expression, amino acid transporter expression, and metabolic fitness and decreased antiapoptotic proteins. Supersuppressor function was observed when wild-type mice were treated with a pharmacologic pan-RAR antagonist. Unexpectedly, Treg-specific expression of DNRARα resulted in distinct phenotypes, such that a single allele of DNRARα in Tregs heightened their suppressive function, and biallelic expression led to loss of suppression and autoimmunity. The loss of Treg function was not cell intrinsic, as Tregs that developed in a noninflammatory milieu in chimeric mice reconstituted with DNRARα and wild-type bone marrow maintained the enhanced suppressive capacity. Fate mapping suggested that maintaining Treg stability in an inflammatory milieu requires RA signaling. Our findings indicate that RA signaling acts as a rheostat to balance Treg function in inflammatory and noninflammatory conditions in a dose-dependent manner.


T-Lymphocytes, Regulatory , Tretinoin , Animals , Autoimmunity , Immune Tolerance , Mice , Signal Transduction , Tretinoin/pharmacology
8.
Int J Mol Sci ; 22(18)2021 Sep 07.
Article En | MEDLINE | ID: mdl-34575843

Graft-versus-host disease (GVHD) is the leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Immunomodulation using regulatory T cells (Tregs) offers an exciting option to prevent and/or treat GVHD as these cells naturally function to maintain immune homeostasis, can induce tolerance following HSCT, and have a tissue reparative function. Studies to date have established a clinical safety profile for polyclonal Tregs. Functional enhancement through genetic engineering offers the possibility of improved potency, specificity, and persistence. In this review, we provide the most up to date preclinical and clinical data on Treg cell therapy with a particular focus on GVHD. We discuss the different Treg subtypes and highlight the pharmacological and genetic approaches under investigation to enhance the application of Tregs in allo-HSCT. Lastly, we discuss the remaining challenges for optimal clinical translation and provide insights as to future directions of the field.


Graft vs Host Disease/therapy , Immunotherapy, Adoptive , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Biomarkers , Cytokines/metabolism , Energy Metabolism , Genetic Engineering , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Immunomodulation , Immunophenotyping , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Translational Research, Biomedical
9.
J Clin Invest ; 131(8)2021 04 15.
Article En | MEDLINE | ID: mdl-33855972

Adoptive transfer of Tregs has been shown to improve alloengraftment in animal models. However, it is technically challenging to expand Tregs ex vivo for the purpose of infusing large numbers of cells in the clinic. We demonstrate an innovative approach to engineering an orthogonal IL-2/IL-2 receptor (IL-2R) pair, the parts of which selectively interact with each other, transmitting native IL-2 signals, but do not interact with the natural IL-2 or IL-2R counterparts, thereby enabling selective stimulation of target cells in vivo. Here, we introduced this orthogonal IL-2R into Tregs. Upon adoptive transfer in a murine mixed hematopoietic chimerism model, orthogonal IL-2 injection significantly promoted orthogonal IL-2R+Foxp3GFP+CD4+ cell proliferation without increasing other T cell subsets and facilitated donor hematopoietic cell engraftment followed by acceptance of heart allografts. Our data indicate that selective target cell stimulation enabled by the engineered orthogonal cytokine receptor improves Treg potential for the induction of organ transplantation tolerance.


Interleukin-2/immunology , Lymphocyte Activation , Receptors, Interleukin-2/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Transplantation Tolerance , Animals , Interleukin-2/genetics , Mice , Mice, Inbred BALB C , Mice, Transgenic , Receptors, Interleukin-2/genetics , Signal Transduction/genetics , T-Lymphocytes, Regulatory/cytology
10.
PLoS One ; 16(3): e0248973, 2021.
Article En | MEDLINE | ID: mdl-33752225

Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.


HIV Infections/immunology , HIV Infections/therapy , HIV-1/physiology , Immunotherapy, Adoptive , Receptors, Chimeric Antigen/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Immunodeficiency Virus/physiology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Bronchoalveolar Lavage , Cell Proliferation , Disease Models, Animal , Female , HIV Infections/blood , HIV Infections/virology , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/virology , T-Lymphocytes/immunology , Viral Load/immunology
11.
Trends Immunol ; 41(1): 77-91, 2020 01.
Article En | MEDLINE | ID: mdl-31791718

Despite graft-versus-host disease (GVHD) prophylactic agents, the success and wider utilization of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by GVHD. Increasing donor graft regulatory T cell (Treg):effector T cell (Teff) ratios can substantially reduce GVHD in cancer patients, but pre-HSCT conditioning regimens and GVHD create a challenging inflammatory environment for Treg stability, persistence, and function. Metabolism plays a crucial role in T cell and Treg differentiation, and development of effector function. Although glycolysis is a main driver of allogeneic T cell-driven GVHD, oxidative phosphorylation is a main driver of Treg suppressor function. This review focuses on recent advances in our understanding of Treg metabolism in the context of GVHD, and discusses potential therapeutic applications of Tregs in the prevention or treatment of GVHD in cancer patients.


Graft vs Host Disease , T-Lymphocytes, Regulatory , Cell Differentiation , Graft vs Host Disease/immunology , Hematopoiesis , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , T-Lymphocytes, Regulatory/immunology
12.
Cytotherapy ; 20(3): 407-419, 2018 03.
Article En | MEDLINE | ID: mdl-29306566

BACKGROUND AIMS: Chimeric antigen receptors (CARs) offer great potential toward a functional cure of human immunodeficiency virus (HIV) infection. To achieve the necessary long-term virus suppression, we believe that CARs must be designed for optimal potency and anti-HIV specificity, and also for minimal probability of virus escape and CAR immunogenicity. CARs containing antibody-based motifs are problematic in the latter regard due to epitope mutation and anti-idiotypic immune responses against the variable regions. METHODS: We designed bispecific CARs, each containing a segment of human CD4 linked to the carbohydrate recognition domain of a human C-type lectin. These CARs target two independent regions on HIV-1 gp120 that presumably must be conserved on clinically significant virus variants (i.e., the primary receptor binding site and the dense oligomannose patch). Functionality and specificity of these bispecific CARs were analyzed in assays of CAR-T cell activation and spreading HIV-1 suppression. RESULTS: T cells expressing a CD4-dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DCSIGN) CAR displayed robust stimulation upon encounter with Env-expressing targets, but negligible activity against intercellular adhesion molecule (ICAM)-2 and ICAM-3, the natural dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin ligands. Moreover, the presence of the lectin moiety prevented the CD4 from acting as an entry receptor on CCR5-expressing cells, including CD8+ T cells. However, in HIV suppression assays, the CD4-DCSIGN CAR and the related CD4-liver/lymph node-specific intercellular adhesion molecule-3-grabbing non-integrin CAR displayed only minimally increased potency compared with the CD4 CAR against some HIV-1 isolates and reduced potency against others. By contrast, the CD4-langerin and CD4-mannose binding lectin (MBL) CARs uniformly displayed enhanced potency compared with the CD4 CAR against all the genetically diverse HIV-1 isolates examined. Further experimental data, coupled with known biological features, suggest particular advantages of the CD4-MBL CAR. DISCUSSION: These studies highlight features of bispecific CD4-lectin CARs that achieve potency enhancement by targeting two distinct highly conserved Env determinants while lacking immunogenicity-prone antibody-based motifs.


CD4 Antigens/metabolism , HIV Envelope Protein gp120/metabolism , HIV Infections/prevention & control , Receptors, Chimeric Antigen/metabolism , Antigens, CD/metabolism , Binding Sites , CD8-Positive T-Lymphocytes/metabolism , Cell Adhesion Molecules/metabolism , Coculture Techniques , HIV Envelope Protein gp120/chemistry , HIV Infections/therapy , HIV-1/physiology , Humans , Lectins, C-Type/metabolism , Mannose , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Engineering/methods , Receptors, Cell Surface/metabolism , Receptors, Chimeric Antigen/genetics , Transduction, Genetic
13.
Vaccine ; 33(10): 1235-42, 2015 Mar 03.
Article En | MEDLINE | ID: mdl-25600519

BACKGROUND: Vaccine-derived polioviruses (VDPVs), strains of poliovirus mutated from the oral polio vaccine, pose a challenge to global polio eradication. Immunodeficiency-related vaccine-derived polioviruses (iVDPVs) are a type of VDPV which may serve as sources of poliovirus reintroduction after the eradication of wild-type poliovirus. This review is a comprehensive update of confirmed iVDPV cases published in the scientific literature from 1962 to 2012, and describes clinically relevant trends in reported iVDPV cases worldwide. METHODS: We conducted a systematic review of published iVDPV case reports from January 1960 to November 2012 from four databases. We included cases in which the patient had a primary immunodeficiency, and the vaccine virus isolated from the patient either met the sequencing definition of VDPV (>1% divergence for serotypes 1 and 3 and >0.6% for serotype 2) and/or was previously reported as an iVDPV by the World Health Organization. RESULTS: We identified 68 iVDPV cases in 49 manuscripts reported from 25 countries and the Palestinian territories. 62% of case patients were male, 78% presented clinically with acute flaccid paralysis, and 65% were iVDPV2. 57% of cases occurred in patients with predominantly antibody immunodeficiencies, and the overall all-cause mortality rate was greater than 60%. The median age at case detection was 1.4 years [IQR: 0.8, 4.5] and the median duration of shedding was 1.3 years [IQR: 0.7, 2.2]. We identified a poliovirus genome VP1 region mutation rate of 0.72% per year and a higher median percent divergence for iVDPV1 cases. More cases were reported from high income countries, which also had a larger age variation and different distribution of immunodeficiencies compared to upper and lower middle-income countries. CONCLUSION: Our study describes the incidence and characteristics of global iVDPV cases reported in the literature in the past five decades. It also highlights the regional and economic disparities of reported iVDPV cases.


Immunologic Deficiency Syndromes/immunology , Poliomyelitis/epidemiology , Poliovirus Vaccine, Oral/adverse effects , Poliovirus/genetics , Vaccination/adverse effects , Capsid Proteins/genetics , Disease Eradication , Female , Humans , Male , Mutation Rate , Poliomyelitis/prevention & control , Poliomyelitis/virology , Poliovirus/pathogenicity , Poliovirus Vaccine, Oral/immunology
...