Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genet Sel Evol ; 54(1): 60, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068488

RESUMEN

BACKGROUND: Sharing individual phenotype and genotype data between countries is complex and fraught with potential errors, while sharing summary statistics of genome-wide association studies (GWAS) is relatively straightforward, and thus would be especially useful for traits that are expensive or difficult-to-measure, such as feed efficiency. Here we examined: (1) the sharing of individual cow data from international partners; and (2) the use of sequence variants selected from GWAS of international cow data to evaluate the accuracy of genomic estimated breeding values (GEBV) for residual feed intake (RFI) in Australian cows. RESULTS: GEBV for RFI were estimated using genomic best linear unbiased prediction (GBLUP) with 50k or high-density single nucleotide polymorphisms (SNPs), from a training population of 3797 individuals in univariate to trivariate analyses where the three traits were RFI phenotypes calculated using 584 Australian lactating cows (AUSc), 824 growing heifers (AUSh), and 2526 international lactating cows (OVE). Accuracies of GEBV in AUSc were evaluated by either cohort-by-birth-year or fourfold random cross-validations. GEBV of AUSc were also predicted using only the AUS training population with a weighted genomic relationship matrix constructed with SNPs from the 50k array and sequence variants selected from a meta-GWAS that included only international datasets. The genomic heritabilities estimated using the AUSc, OVE and AUSh datasets were moderate, ranging from 0.20 to 0.36. The genetic correlations (rg) of traits between heifers and cows ranged from 0.30 to 0.95 but were associated with large standard errors. The mean accuracies of GEBV in Australian cows were up to 0.32 and almost doubled when either overseas cows, or both overseas cows and AUS heifers were included in the training population. They also increased when selected sequence variants were combined with 50k SNPs, but with a smaller relative increase. CONCLUSIONS: The accuracy of RFI GEBV increased when international data were used or when selected sequence variants were combined with 50k SNP array data. This suggests that if direct sharing of data is not feasible, a meta-analysis of summary GWAS statistics could provide selected SNPs for custom panels to use in genomic selection programs. However, since this finding is based on a small cross-validation study, confirmation through a larger study is recommended.


Asunto(s)
Bovinos , Lactancia , Animales , Australia , Bovinos/genética , Femenino , Estudio de Asociación del Genoma Completo , Genómica , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
2.
Front Genet ; 13: 883520, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646089

RESUMEN

Previous studies have shown reduced enteric methane emissions (ME) and residual feed intake (RFI) through the application of genomic selection in ruminants. The objective of this study was to evaluate feeding behaviour traits as genetic indicators for ME and RFI in Australian Maternal Composite ewes using data from an automated feed intake facility. The feeding behaviour traits evaluated were the amount of time spent eating per day (eating time; ETD; min/day) and per visit (eating time per event; ETE; min/event), daily number of events (DNE), event feed intake (EFI; g/event) and eating rate (ER; g/min). Genotypes and phenotypes of 445 ewes at three different ages (post-weaning, hogget, and adult) were used to estimate the heritability of ME, RFI, and the feeding behaviour traits using univariate genomic best linear unbiased prediction models. Multivariate models were used to estimate the correlations between these traits and within each trait at different ages. The response to selection was evaluated for ME and RFI with direct selection models and indirect models with ETE as an indicator trait, as this behaviour trait was a promising indicator based on heritability and genetic correlations. Heritabilities were between 0.12 and 0.18 for ME and RFI, and between 0.29 and 0.47 for the eating behaviour traits. In our data, selecting for more efficient animals (low RFI) would lead to higher methane emissions per day and per kg of dry matter intake. Selecting for more ETE also improves feed efficiency but results in more methane per day and per kg dry matter intake. Based on our results, ETE could be evaluated as an indicator trait for ME and RFI under an index approach that allows simultaneous selection for improvement in emissions and feed efficiency. Selecting for ETE may have a tremendous impact on the industry, as it may be easier and cheaper to obtain than feed intake and ME data. As the data were collected using individual feeding units, the findings on this research should be validated under grazing conditions.

3.
Commun Biol ; 4(1): 1353, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857886

RESUMEN

Mutant alleles (MAs) that have been classically recognised have large effects on phenotype and tend to be deleterious to traits and fitness. Is this the case for mutations with small effects? We infer MAs for 8 million sequence variants in 113k cattle and quantify the effects of MA on 37 complex traits. Heterozygosity for variants at genomic sites conserved across 100 vertebrate species increase fertility, stature, and milk production, positively associating these traits with fitness. MAs decrease stature and fat and protein concentration in milk, but increase gestation length and somatic cell count in milk (the latter indicative of mastitis). However, the frequency of MAs decreasing stature and fat and protein concentration, increasing gestation length and somatic cell count were lower than the frequency of MAs with the opposite effect. These results suggest bias in the mutations direction of effect (e.g. towards reduced protein in milk), but selection operating to reduce the frequency of these MAs. Taken together, our results imply two classes of genomic sites subject to long-term selection: sites conserved across vertebrates show hybrid vigour while sites subject to less long-term selection show a bias in mutation towards undesirable alleles.


Asunto(s)
Alelos , Bovinos/genética , Aptitud Genética , Mutación , Fenotipo , Animales , Tamaño Corporal/genética , Femenino , Glucolípidos/genética , Glicoproteínas/genética , Gotas Lipídicas , Leche/química , Proteínas de la Leche/genética , Embarazo
4.
Genet Sel Evol ; 53(1): 58, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238208

RESUMEN

BACKGROUND: Imputation to whole-genome sequence is now possible in large sheep populations. It is therefore of interest to use this data in genome-wide association studies (GWAS) to investigate putative causal variants and genes that underpin economically important traits. Merino wool is globally sought after for luxury fabrics, but some key wool quality attributes are unfavourably correlated with the characteristic skin wrinkle of Merinos. In turn, skin wrinkle is strongly linked to susceptibility to "fly strike" (Cutaneous myiasis), which is a major welfare issue. Here, we use whole-genome sequence data in a multi-trait GWAS to identify pleiotropic putative causal variants and genes associated with changes in key wool traits and skin wrinkle. RESULTS: A stepwise conditional multi-trait GWAS (CM-GWAS) identified putative causal variants and related genes from 178 independent quantitative trait loci (QTL) of 16 wool and skin wrinkle traits, measured on up to 7218 Merino sheep with 31 million imputed whole-genome sequence (WGS) genotypes. Novel candidate gene findings included the MAT1A gene that encodes an enzyme involved in the sulphur metabolism pathway critical to production of wool proteins, and the ESRP1 gene. We also discovered a significant wrinkle variant upstream of the HAS2 gene, which in dogs is associated with the exaggerated skin folds in the Shar-Pei breed. CONCLUSIONS: The wool and skin wrinkle traits studied here appear to be highly polygenic with many putative candidate variants showing considerable pleiotropy. Our CM-GWAS identified many highly plausible candidate genes for wool traits as well as breech wrinkle and breech area wool cover.


Asunto(s)
Pleiotropía Genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Ovinos/genética , Animales , Hialuronano Sintasas/genética , Metionina Adenosiltransferasa/genética , Herencia Multifactorial , Proteínas de Unión al ARN/genética , Fenómenos Fisiológicos de la Piel/genética , Fibra de Lana/normas
5.
Genet Sel Evol ; 51(1): 72, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31805849

RESUMEN

BACKGROUND: Whole-genome sequence (WGS) data could contain information on genetic variants at or in high linkage disequilibrium with causative mutations that underlie the genetic variation of polygenic traits. Thus far, genomic prediction accuracy has shown limited increase when using such information in dairy cattle studies, in which one or few breeds with limited diversity predominate. The objective of our study was to evaluate the accuracy of genomic prediction in a multi-breed Australian sheep population of relatively less related target individuals, when using information on imputed WGS genotypes. METHODS: Between 9626 and 26,657 animals with phenotypes were available for nine economically important sheep production traits and all had WGS imputed genotypes. About 30% of the data were used to discover predictive single nucleotide polymorphism (SNPs) based on a genome-wide association study (GWAS) and the remaining data were used for training and validation of genomic prediction. Prediction accuracy using selected variants from imputed sequence data was compared to that using a standard array of 50k SNP genotypes, thereby comparing genomic best linear prediction (GBLUP) and Bayesian methods (BayesR/BayesRC). Accuracy of genomic prediction was evaluated in two independent populations that were each lowly related to the training set, one being purebred Merino and the other crossbred Border Leicester x Merino sheep. RESULTS: A substantial improvement in prediction accuracy was observed when selected sequence variants were fitted alongside 50k genotypes as a separate variance component in GBLUP (2GBLUP) or in Bayesian analysis as a separate category of SNPs (BayesRC). From an average accuracy of 0.27 in both validation sets for the 50k array, the average absolute increase in accuracy across traits with 2GBLUP was 0.083 and 0.073 for purebred and crossbred animals, respectively, whereas with BayesRC it was 0.102 and 0.087. The average gain in accuracy was smaller when selected sequence variants were treated in the same category as 50k SNPs. Very little improvement over 50k prediction was observed when using all WGS variants. CONCLUSIONS: Accuracy of genomic prediction in diverse sheep populations increased substantially by using variants selected from whole-genome sequence data based on an independent multi-breed GWAS, when compared to genomic prediction using standard 50K genotypes.


Asunto(s)
Genómica/métodos , Ovinos/genética , Secuenciación Completa del Genoma , Animales , Australia , Teorema de Bayes , Cruzamiento , Estudio de Asociación del Genoma Completo , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
6.
Proc Natl Acad Sci U S A ; 116(39): 19398-19408, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31501319

RESUMEN

Many genome variants shaping mammalian phenotype are hypothesized to regulate gene transcription and/or to be under selection. However, most of the evidence to support this hypothesis comes from human studies. Systematic evidence for regulatory and evolutionary signals contributing to complex traits in a different mammalian model is needed. Sequence variants associated with gene expression (expression quantitative trait loci [eQTLs]) and concentration of metabolites (metabolic quantitative trait loci [mQTLs]) and under histone-modification marks in several tissues were discovered from multiomics data of over 400 cattle. Variants under selection and evolutionary constraint were identified using genome databases of multiple species. These analyses defined 30 sets of variants, and for each set, we estimated the genetic variance the set explained across 34 complex traits in 11,923 bulls and 32,347 cows with 17,669,372 imputed variants. The per-variant trait heritability of these sets across traits was highly consistent (r > 0.94) between bulls and cows. Based on the per-variant heritability, conserved sites across 100 vertebrate species and mQTLs ranked the highest, followed by eQTLs, young variants, those under histone-modification marks, and selection signatures. From these results, we defined a Functional-And-Evolutionary Trait Heritability (FAETH) score indicating the functionality and predicted heritability of each variant. In additional 7,551 cattle, the high FAETH-ranking variants had significantly increased genetic variances and genomic prediction accuracies in 3 production traits compared to the low FAETH-ranking variants. The FAETH framework combines the information of gene regulation, evolution, and trait heritability to rank variants, and the publicly available FAETH data provide a set of biological priors for cattle genomic selection worldwide.


Asunto(s)
Evolución Biológica , Bovinos/genética , Regulación de la Expresión Génica/genética , Herencia Multifactorial/genética , Animales , Cruzamiento , Bases de Datos Genéticas , Femenino , Variación Genética , Genoma/genética , Estudio de Asociación del Genoma Completo , Masculino , Fenotipo , Sitios de Carácter Cuantitativo/genética , Selección Genética
7.
Genet Sel Evol ; 51(1): 1, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30654735

RESUMEN

BACKGROUND: The use of whole-genome sequence (WGS) data for genomic prediction and association studies is highly desirable because the causal mutations should be present in the data. The sequencing of 935 sheep from a range of breeds provides the opportunity to impute sheep genotyped with single nucleotide polymorphism (SNP) arrays to WGS. This study evaluated the accuracy of imputation from SNP genotypes to WGS using this reference population of 935 sequenced sheep. RESULTS: The accuracy of imputation from the Ovine Infinium® HD BeadChip SNP (~ 500 k) to WGS was assessed for three target breeds: Merino, Poll Dorset and F1 Border Leicester × Merino. Imputation accuracy was highest for the Poll Dorset breed, although there were more Merino individuals in the sequenced reference population than Poll Dorset individuals. In addition, empirical imputation accuracies were higher (by up to 1.7%) when using larger multi-breed reference populations compared to using a smaller single-breed reference population. The mean accuracy of imputation across target breeds using the Minimac3 or the FImpute software was 0.94. The empirical imputation accuracy varied considerably across the genome; six chromosomes carried regions of one or more Mb with a mean imputation accuracy of < 0.7. Imputation accuracy in five variant annotation classes ranged from 0.87 (missense) up to 0.94 (intronic variants), where lower accuracy corresponded to higher proportions of rare alleles. The imputation quality statistic reported from Minimac3 (R2) had a clear positive relationship with the empirical imputation accuracy. Therefore, by first discarding imputed variants with an R2 below 0.4, the mean empirical accuracy across target breeds increased to 0.97. Although accuracy of genomic prediction was less affected by filtering on R2 in a multi-breed population of sheep with imputed WGS, the genomic heritability clearly tended to be lower when using variants with an R2 ≤ 0.4. CONCLUSIONS: The mean imputation accuracy was high for all target breeds and was increased by combining smaller breed sets into a multi-breed reference. We found that the Minimac3 software imputation quality statistic (R2) was a useful indicator of empirical imputation accuracy, enabling removal of very poorly imputed variants before downstream analyses.


Asunto(s)
Estudio de Asociación del Genoma Completo/normas , Ovinos/genética , Programas Informáticos/normas , Secuenciación Completa del Genoma/normas , Animales , Estudio de Asociación del Genoma Completo/veterinaria , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma/veterinaria
8.
BMC Genomics ; 19(1): 793, 2018 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-30390624

RESUMEN

BACKGROUND: The mutations changing the expression level of a gene, or expression quantitative trait loci (eQTL), can be identified by testing the association between genetic variants and gene expression in multiple individuals (eQTL mapping), or by comparing the expression of the alleles in a heterozygous individual (allele specific expression or ASE analysis). The aims of the study were to find and compare ASE and local eQTL in 4 bovine RNA-sequencing (RNA-Seq) datasets, validate them in an independent ASE study and investigate if they are associated with complex trait variation. RESULTS: We present a novel method for distinguishing between ASE driven by polymorphisms in cis and parent of origin effects. We found that single nucleotide polymorphisms (SNPs) driving ASE are also often local eQTL and therefore presumably cis eQTL. These SNPs often, but not always, affect gene expression in multiple tissues and, when they do, the allele increasing expression is usually the same. However, there were systematic differences between ASE and local eQTL and between tissues and breeds. We also found that SNPs significantly associated with gene expression (p < 0.001) were likely to influence some complex traits (p < 0.001), which means that some mutations influence variation in complex traits by changing the expression level of genes. CONCLUSION: We conclude that ASE detects phenomenon that overlap with local eQTL, but there are also systematic differences between the SNPs discovered by the two methods. Some mutations influencing complex traits are actually eQTL and can be discovered using RNA-Seq including eQTL in the genes CAST, CAPN1, LCORL and LEPROTL1.


Asunto(s)
Alelos , Expresión Génica , Variación Genética , Herencia Multifactorial , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Animales , Bovinos , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
9.
BMC Genomics ; 19(1): 521, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973141

RESUMEN

BACKGROUND: Mammalian phenotypes are shaped by numerous genome variants, many of which may regulate gene transcription or RNA splicing. To identify variants with regulatory functions in cattle, an important economic and model species, we used sequence variants to map a type of expression quantitative trait loci (expression QTLs) that are associated with variations in the RNA splicing, i.e., sQTLs. To further the understanding of regulatory variants, sQTLs were compare with other two types of expression QTLs, 1) variants associated with variations in gene expression, i.e., geQTLs and 2) variants associated with variations in exon expression, i.e., eeQTLs, in different tissues. RESULTS: Using whole genome and RNA sequence data from four tissues of over 200 cattle, sQTLs identified using exon inclusion ratios were verified by matching their effects on adjacent intron excision ratios. sQTLs contained the highest percentage of variants that are within the intronic region of genes and contained the lowest percentage of variants that are within intergenic regions, compared to eeQTLs and geQTLs. Many geQTLs and sQTLs are also detected as eeQTLs. Many expression QTLs, including sQTLs, were significant in all four tissues and had a similar effect in each tissue. To verify such expression QTL sharing between tissues, variants surrounding (±1 Mb) the exon or gene were used to build local genomic relationship matrices (LGRM) and estimated genetic correlations between tissues. For many exons, the splicing and expression level was determined by the same cis additive genetic variance in different tissues. Thus, an effective but simple-to-implement meta-analysis combining information from three tissues is introduced to increase power to detect and validate sQTLs. sQTLs and eeQTLs together were more enriched for variants associated with cattle complex traits, compared to geQTLs. Several putative causal mutations were identified, including an sQTL at Chr6:87392580 within the 5th exon of kappa casein (CSN3) associated with milk production traits. CONCLUSIONS: Using novel analytical approaches, we report the first identification of numerous bovine sQTLs which are extensively shared between multiple tissue types. The significant overlaps between bovine sQTLs and complex traits QTL highlight the contribution of regulatory mutations to phenotypic variations.


Asunto(s)
Variación Genética , Empalme del ARN , Animales , Células Sanguíneas/metabolismo , Caseínas/genética , Bovinos , Exones , Femenino , Hígado/metabolismo , Glándulas Mamarias Animales/metabolismo , Músculos/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Transcriptoma
10.
Genet Sel Evol ; 50(1): 28, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29788905

RESUMEN

BACKGROUND: In horned sheep breeds, breeding for polledness has been of interest for decades. The objective of this study was to improve prediction of the horned and polled phenotypes using horn scores classified as polled, scurs, knobs or horns. Derived phenotypes polled/non-polled (P/NP) and horned/non-horned (H/NH) were used to test four different strategies for prediction in 4001 purebred Merino sheep. These strategies include the use of single 'single nucleotide polymorphism' (SNP) genotypes, multiple-SNP haplotypes, genome-wide and chromosome-wide genomic best linear unbiased prediction and information from imputed sequence variants from the region including the RXFP2 gene. Low-density genotypes of these animals were imputed to the Illumina Ovine high-density (600k) chip and the 1.78-kb insertion polymorphism in RXFP2 was included in the imputation process to whole-genome sequence. We evaluated the mode of inheritance and validated models by a fivefold cross-validation and across- and between-family prediction. RESULTS: The most significant SNPs for prediction of P/NP and H/NH were OAR10_29546872.1 and OAR10_29458450, respectively, located on chromosome 10 close to the 1.78-kb insertion at 29.5 Mb. The mode of inheritance included an additive effect and a sex-dependent effect for dominance for P/NP and a sex-dependent additive and dominance effect for H/NH. Models with the highest prediction accuracies for H/NH used either single SNPs or 3-SNP haplotypes and included a polygenic effect estimated based on traditional pedigree relationships. Prediction accuracies for H/NH were 0.323 for females and 0.725 for males. For predicting P/NP, the best models were the same as for H/NH but included a genomic relationship matrix with accuracies of 0.713 for females and 0.620 for males. CONCLUSIONS: Our results show that prediction accuracy is high using a single SNP, but does not reach 1 since the causative mutation is not genotyped. Incomplete penetrance or allelic heterogeneity, which can influence expression of the phenotype, may explain why prediction accuracy did not approach 1 with any of the genetic models tested here. Nevertheless, a breeding program to eradicate horns from Merino sheep can be effective by selecting genotypes GG of SNP OAR10_29458450 or TT of SNP OAR10_29546872.1 since all sheep with these genotypes will be non-horned.


Asunto(s)
Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Ovinos/anatomía & histología , Secuenciación Completa del Genoma/veterinaria , Animales , Cruzamiento , Mapeo Cromosómico/veterinaria , Cromosomas/genética , Femenino , Cuernos , Masculino , Herencia Multifactorial , Fenotipo , Receptores Acoplados a Proteínas G/genética , Ovinos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA