Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 384(6696): 688-693, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38723067

RESUMEN

Heritable variation is a prerequisite for evolutionary change, but the relevance of genetic constraints on macroevolutionary timescales is debated. By using two datasets on fossil and contemporary taxa, we show that evolutionary divergence among populations, and to a lesser extent among species, increases with microevolutionary evolvability. We evaluate and reject several hypotheses to explain this relationship and propose that an effect of evolvability on population and species divergence can be explained by the influence of genetic constraints on the ability of populations to track rapid, stationary environmental fluctuations.


Asunto(s)
Evolución Biológica , Fósiles , Selección Genética , Animales , Variación Genética , Conjuntos de Datos como Asunto
2.
Evolution ; 78(5): 934-950, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38393696

RESUMEN

Epistasis is often portrayed as unimportant in evolution. While random patterns of epistasis may have limited effects on the response to selection, systematic directional epistasis can have substantial effects on evolutionary dynamics. Directional epistasis occurs when allele substitutions that change a trait also modify the effects of allele substitution at other loci in a systematic direction. In this case, trait evolution may induce correlated changes in allelic effects and additive genetic variance (evolvability) that modify further evolution. Although theory thus suggests a potentially important role for directional epistasis in evolution, we still lack empirical evidence about its prevalence and magnitude. Using a new framework to estimate systematic patterns of epistasis from line-crosses experiments, we quantify its effects on 197 size-related traits from diverging natural populations in 24 animal and 17 plant species. We show that directional epistasis is common and tends to become stronger with increasing morphological divergence. In animals, most traits displayed negative directionality toward larger size, suggesting that epistatic constraints reducing evolvability toward larger size. Dominance was also common but did not systematically alter the effects of epistasis.


Asunto(s)
Epistasis Genética , Animales , Plantas/genética , Plantas/anatomía & histología , Evolución Biológica , Tamaño Corporal
3.
Mol Ecol ; 33(3): e17229, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38063470

RESUMEN

Evolution of phenotypic plasticity requires genotype-environment interaction. The discovery of two large-effect loci in the vgll3 and six6 genomic regions associated with the number of years the Atlantic salmon spend feeding at sea before maturation (sea age), provides a unique opportunity to study evolutionary potential of phenotypic plasticity. Using data on 1246 Atlantic salmon caught in the River Surna in Norway, we show that variation in mean sea age among years (smolt cohorts 2013-2018) is influenced by genotype frequencies as well as interaction effects between genotype and year. Genotype-year interactions suggest that genotypes may differ in their response to environmental variation across years, implying genetic variation in phenotypic plasticity. Our results also imply that plasticity in sea age will evolve as an indirect response to selection on mean sea age due to a shared genetic basis. Furthermore, we demonstrate differences between years in the additive and dominance functional genetic effects of vgll3 and six6 on sea age, suggesting that evolutionary responses will vary across environments. Considering the importance of age at maturity for survival and reproduction, genotype-environment interactions likely play an important role in local adaptation and population demography in Atlantic salmon.


Asunto(s)
Salmo salar , Animales , Salmo salar/genética , Genotipo , Reproducción/genética , Genoma , Adaptación Fisiológica , Factores de Transcripción
4.
Proc Natl Acad Sci U S A ; 120(1): e2203228120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36580593

RESUMEN

Understanding the causes and limits of population divergence in phenotypic traits is a fundamental aim of evolutionary biology, with the potential to yield predictions of adaptation to environmental change. Reciprocal transplant experiments and the evaluation of optimality models suggest that local adaptation is common but not universal, and some studies suggest that trait divergence is highly constrained by genetic variances and covariances of complex phenotypes. We analyze a large database of population divergence in plants and evaluate whether evolutionary divergence scales positively with standing genetic variation within populations (evolvability), as expected if genetic constraints are evolutionarily important. We further evaluate differences in divergence and evolvability-divergence relationships between reproductive and vegetative traits and between selfing, mixed-mating, and outcrossing species, as these factors are expected to influence both patterns of selection and evolutionary potentials. Evolutionary divergence scaled positively with evolvability. Furthermore, trait divergence was greater for vegetative traits than for floral (reproductive) traits, but largely independent of the mating system. Jointly, these factors explained ~40% of the variance in evolutionary divergence. The consistency of the evolvability-divergence relationships across diverse species suggests substantial predictability of trait divergence. The results are also consistent with genetic constraints playing a role in evolutionary divergence.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Reproducción , Fenotipo , Aclimatación , Plantas/genética , Variación Genética , Flores/genética
5.
Heredity (Edinb) ; 129(6): 356-365, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36357776

RESUMEN

Characterizing the role of different mutational effect sizes in the evolution of fitness-related traits has been a major goal in evolutionary biology for a century. Such characterization in a diversity of systems, both model and non-model, will help to understand the genetic processes underlying fitness variation. However, well-characterized genetic architectures of such traits in wild populations remain uncommon. In this study, we used haplotype-based and multi-SNP Bayesian association methods with sequencing data for 313 individuals from wild populations to test the mutational composition of known candidate regions for sea age at maturation in Atlantic salmon (Salmo salar). We detected an association at five loci out of 116 candidates previously identified in an aquaculture strain with maturation timing in wild Atlantic salmon. We found that at four of these five loci, variation explained by the locus was predominantly driven by a single SNP suggesting the genetic architecture of this trait includes multiple loci with simple, non-clustered alleles and a locus with potentially more complex alleles. This highlights the diversity of genetic architectures that can exist for fitness-related traits. Furthermore, this study provides a useful multi-SNP framework for future work using sequencing data to characterize genetic variation underlying phenotypes in wild populations.


Asunto(s)
Salmo salar , Animales , Salmo salar/genética , Haplotipos , Polimorfismo de Nucleótido Simple , Teorema de Bayes , Fenotipo
6.
Proc Natl Acad Sci U S A ; 119(44): e2207634119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279467

RESUMEN

Understanding the potential of natural populations to adapt to altered environments is becoming increasingly relevant in evolutionary research. Currently, our understanding of adaptation to human alteration of the environment is hampered by lack of knowledge on the genetic basis of traits, lack of time series, and little or no information on changes in optimal trait values. Here, we used time series data spanning nearly a century to investigate how the body mass of Atlantic salmon (Salmo salar) adapts to river regulation. We found that the change in body mass followed the change in waterflow, both decreasing to ∼1/3 of their original values. Allele frequency changes at two loci in the regions of vgll3 and six6 predicted more than 80% of the observed body mass reduction. Modeling the adaptive dynamics revealed that the population mean lagged behind its optimum before catching up approximately six salmon generations after the initial waterflow reduction. Our results demonstrate rapid adaptation mediated by large-effect loci and provide insight into the temporal dynamics of evolutionary rescue following human disturbance.


Asunto(s)
Salmo salar , Animales , Adaptación Fisiológica/genética , Tamaño Corporal/genética , Frecuencia de los Genes , Ríos , Salmo salar/genética
7.
Sci Adv ; 8(9): eabk2542, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245115

RESUMEN

Ecological regime shifts are abrupt changes in the structure and function of ecosystems that persist over time, but evidence of contemporary regime shifts are rare. Historical scale data from 52,384 individual wild Atlantic salmon caught in 180 rivers from 1989 to 2017 reveal that growth of Atlantic salmon across the Northeast Atlantic Ocean abruptly decreased following the year 2004. At the same time, the proportion of early maturing Atlantic salmon decreased. These changes occurred after a marked decrease in the extent of Arctic water in the Norwegian Sea, a subsequent warming of spring water temperature before Atlantic salmon entering the sea, and an approximately 50% reduction of zooplankton across large geographic areas of the Northeast Atlantic Ocean. A sudden decrease in growth was also observed among Atlantic mackerel in the Norwegian Sea. Our results point toward an ecosystem-scale regime shift in the Northeast Atlantic Ocean.

8.
Syst Biol ; 71(5): 1054-1072, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34865153

RESUMEN

Understanding variation in rates of evolution and morphological disparity is a goal of macroevolutionary research. In a phylogenetic comparative methods framework, we present three explicit models for linking the rate of evolution of a trait to the state of another evolving trait. This allows testing hypotheses about causal influences on rates of phenotypic evolution with phylogenetic comparative data. We develop a statistical framework for fitting the models with generalized least-squares regression and use this to discuss issues and limitations in the study of rates of evolution more generally. We show that the power to detect effects on rates of evolution is low in that even strong causal effects are unlikely to explain more than a few percent of observed variance in disparity. We illustrate the models and issues by testing if rates of beak-shape evolution in birds are influenced by brain size, as may be predicted from a Baldwin effect in which presumptively more behaviorally flexible large-brained species generate more novel selection on themselves leading to higher rates of evolution. From an analysis of morphometric data for 645 species, we find evidence that both macro- and microevolution of the beak are faster in birds with larger brains, but with the caveat that there are no consistent effects of relative brain size.[Baldwin effect; beak shape; behavioral drive; bird; brain size; disparity; phylogenetic comparative method; rate of evolution.].


Asunto(s)
Pico , Evolución Biológica , Animales , Pico/anatomía & histología , Aves , Fenotipo , Filogenia
9.
Sci Adv ; 7(52): eabj3397, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34936452

RESUMEN

After a half a century of salmon farming, we have yet to understand how the influx of genes from farmed escapees affects the full life history of Atlantic salmon (Salmo salar L.) in the wild. Using scale samples of over 6900 wild adult salmon from 105 rivers, we document that increased farmed genetic ancestry is associated with increased growth throughout life and a younger age at both seaward migration and sexual maturity. There was large among-population variation in the effects of introgression. Most saliently, the increased growth at sea following introgression declined with the population's average growth potential. Variation at two major-effect loci associated with age at maturity was little affected by farmed genetic ancestry and could not explain the observed phenotypic effects of introgression. Our study provides knowledge crucial for predicting the ecological and evolutionary consequences of increased aquaculture production worldwide.

10.
Evolution ; 75(9): 2217-2236, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34137027

RESUMEN

Although artificial-selection experiments seem well suited to testing our ability to predict evolution, the correspondence between predicted and observed responses is often ambiguous due to the lack of uncertainty estimates. We present equations for assessing prediction error in direct and indirect responses to selection that integrate uncertainty in genetic parameters used for prediction and sampling effects during selection. Using these, we analyzed a selection experiment on floral traits replicated in two taxa of the Dalechampia scandens (Euphorbiaceae) species complex for which G-matrices were obtained from a diallel breeding design. After four episodes of bidirectional selection, direct and indirect responses remained within wide prediction intervals, but appeared different from the predictions. Combined analyses with structural-equation models confirmed that responses were asymmetrical and lower than predicted in both species. We show that genetic drift is likely to be a dominant source of uncertainty in typically-dimensioned selection experiments in plants and a major obstacle to predicting short-term evolutionary trajectories.


Asunto(s)
Euphorbiaceae , Selección Genética , Evolución Biológica , Modelos Genéticos , Fenotipo
11.
Evolution ; 75(2): 294-309, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33230820

RESUMEN

Spatiotemporal variation in natural selection is expected, but difficult to estimate. Pollinator-mediated selection on floral traits provides a good system for understanding and linking variation in selection to differences in ecological context. We studied pollinator-mediated selection in five populations of Dalechampia scandens (Euphorbiaceae) in Costa Rica and Mexico. Using a nonlinear path-analytical approach, we assessed several functional components of selection, and linked variation in pollinator-mediated selection across time and space to variation in pollinator assemblages. After correcting for estimation error, we detected moderate variation in net selection on two out of four blossom traits. Both the opportunity for selection and the mean strength of selection decreased with increasing reliability of cross-pollination. Selection for pollinator attraction was consistently positive and stronger on advertisement than reward traits. Selection on traits affecting pollen transfer from the pollinator to the stigmas was strong only when cross-pollination was unreliable and there was a mismatch between pollinator and blossom size. These results illustrate how consideration of trait function and ecological context can facilitate both the detection and the causal understanding of spatiotemporal variation in natural selection.


Asunto(s)
Euphorbiaceae/genética , Flores/fisiología , Aptitud Genética , Polinización , Selección Genética , Animales
12.
Nat Commun ; 10(1): 199, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30643117

RESUMEN

Stocking of hatchery produced fish is common practise to mitigate declines in natural populations and may have unwanted genetic consequences. Here we describe a novel phenomenon arising where broodstock used for stocking may be introgressed with farmed individuals. We test how stocking affects introgression in a wild population of Atlantic salmon (Salmo salar) by quantifying how the number of adult offspring recaptured in a stocked river depend on parental introgression. We found that hatchery conditions favour farmed genotypes such that introgressed broodstock produce up to four times the number of adult offspring compared to non-introgressed broodstock, leading to increased introgression in the recipient spawning population. Our results provide the first empirical evidence that stocking can unintentionally favour introgressed individuals and through selection for domesticated genotypes compromise the fitness of stocked wild populations.


Asunto(s)
Domesticación , Explotaciones Pesqueras , Genotipo , Salmo salar/genética , Selección Genética , Animales , Femenino , Interacción Gen-Ambiente , Variación Genética , Masculino , Ríos
13.
Biol Rev Camb Philos Soc ; 94(1): 230-247, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30019372

RESUMEN

We present a novel perspective on life-history evolution that combines recent theoretical advances in fluctuating density-dependent selection with the notion of pace-of-life syndromes (POLSs) in behavioural ecology. These ideas posit phenotypic co-variation in life-history, physiological, morphological and behavioural traits as a continuum from the highly fecund, short-lived, bold, aggressive and highly dispersive 'fast' types at one end of the POLS to the less fecund, long-lived, cautious, shy, plastic and socially responsive 'slow' types at the other. We propose that such variation in life histories and the associated individual differences in behaviour can be explained through their eco-evolutionary dynamics with population density - a single and ubiquitous selective factor that is present in all biological systems. Contrasting regimes of environmental stochasticity are expected to affect population density in time and space and create differing patterns of fluctuating density-dependent selection, which generates variation in fast versus slow life histories within and among populations. We therefore predict that a major axis of phenotypic co-variation in life-history, physiological, morphological and behavioural traits (i.e. the POLS) should align with these stochastic fluctuations in the multivariate fitness landscape created by variation in density-dependent selection. Phenotypic plasticity and/or genetic (co-)variation oriented along this major POLS axis are thus expected to facilitate rapid and adaptively integrated changes in various aspects of life histories within and among populations and/or species. The fluctuating density-dependent selection POLS framework presented here therefore provides a series of clear testable predictions, the investigation of which should further our fundamental understanding of life-history evolution and thus our ability to predict natural population dynamics.

14.
Proc Natl Acad Sci U S A ; 115(45): 11561-11566, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30282740

RESUMEN

In polyandrous species, fathers benefit from attracting greater maternal investment toward their offspring at the expense of the offspring of other males, while mothers should usually allocate resources equally among offspring. This conflict can lead to an evolutionary arms race between the sexes, manifested through antagonistic genes whose expression in offspring depends upon the parent of origin. The arms race may involve an increase in the strength of maternally versus paternally derived alleles engaged in a "tug of war" over maternal provisioning or repeated "recognition-avoidance" coevolution where growth-enhancing paternally derived alleles evolve to escape recognition by maternal genes targeted to suppress their effect. Here, we develop predictions to distinguish between these two mechanisms when considering crosses among populations that have reached different equilibria in this intersexual arms race. We test these predictions using crosses within and among populations of Dalechampia scandens (Euphorbiaceae) that presumably have experienced different intensities of intersexual conflict, as inferred from their historical differences in mating system. In crosses where the paternal population was more outcrossed than the maternal population, hybrid seeds were larger than those normally produced in the maternal population, whereas when the maternal population was more outcrossed, hybrid seeds were smaller than normal. These results confirm the importance of mating systems in determining the intensity of intersexual conflict over maternal investment and provide strong support for a tug-of-war mechanism operating in this conflict. They also yield clear predictions for the fitness consequences of gene flow among populations with different mating histories.


Asunto(s)
Euphorbiaceae/genética , Flujo Génico , Patrón de Herencia , Semillas/genética , Quimera , Cruzamientos Genéticos , Euphorbiaceae/anatomía & histología , Aptitud Genética , Fitomejoramiento , Semillas/anatomía & histología
15.
Nature ; 548(7668): 447-450, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28792935

RESUMEN

Mutation enables evolution, but the idea that adaptation is also shaped by mutational variation is controversial. Simple evolutionary hypotheses predict such a relationship if the supply of mutations constrains evolution, but it is not clear that constraints exist, and, even if they do, they may be overcome by long-term natural selection. Quantification of the relationship between mutation and phenotypic divergence among species will help to resolve these issues. Here we use precise data on over 50,000 Drosophilid fly wings to demonstrate unexpectedly strong positive relationships between variation produced by mutation, standing genetic variation, and the rate of evolution over the last 40 million years. Our results are inconsistent with simple constraint hypotheses because the rate of evolution is very low relative to what both mutational and standing variation could allow. In principle, the constraint hypothesis could be rescued if the vast majority of mutations are so deleterious that they cannot contribute to evolution, but this also requires the implausible assumption that deleterious mutations have the same pattern of effects as potentially advantageous ones. Our evidence for a strong relationship between mutation and divergence in a slowly evolving structure challenges the existing models of mutation in evolution.


Asunto(s)
Evolución Biológica , Dípteros/anatomía & histología , Dípteros/genética , Modelos Genéticos , Mutación , Alas de Animales/anatomía & histología , Animales , Drosophila/anatomía & histología , Drosophila/genética , Femenino , Masculino , Tamaño de los Órganos , Fenotipo , Filogenia , Selección Genética , Caracteres Sexuales
16.
Nat Ecol Evol ; 1(5): 124, 2017 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-28812692

RESUMEN

Interbreeding between domesticated and wild animals occurs in several species. This gene flow has long been anticipated to induce genetic changes in life-history traits of wild populations, thereby influencing population dynamics and viability. Here, we show that individuals with high levels of introgression (domesticated ancestry) have altered age and size at maturation in 62 wild Atlantic salmon Salmo salar populations, including seven ancestral populations to breeding lines of the domesticated salmon. This study documents widespread changes to life-history traits in wild animal populations following gene flow from selectively bred, domesticated conspecifics. The continued high abundance of escaped, domesticated Atlantic salmon thus threatens wild Atlantic salmon populations by inducing genetic changes in fitness-related traits. Our results represent key evidence and a timely warning concerning the potential ecological impacts of the globally increasing use of domesticated animals.

17.
New Phytol ; 215(2): 906-917, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28556899

RESUMEN

The goal of biological measurement is to capture underlying biological phenomena in numerical form. The reciprocity index applied to heterostylous flowers is meant to measure the degree of correspondence between fertile parts of opposite sex on complementary (inter-compatible) morphs, reflecting the correspondence of locations of pollen placement on, and stigma contact with, pollinators. Pollen of typical heterostylous flowers can achieve unimpeded fertilization only on opposite-morph flowers. Thus, the implicit goal of this measurement is to assess the likelihood of 'legitimate' pollinations between compatible morphs, and hence reproductive fitness. Previous reciprocity metrics fall short of this goal on both empirical and theoretical grounds. We propose a new measure of reciprocity based on theory that relates floral morphology to reproductive fitness. This method establishes a scale based on adaptive inaccuracy, a measure of the fitness cost of the deviation of phenotypes in a population from the optimal phenotype. Inaccuracy allows the estimation of independent contributions of maladaptive bias (mean departure from optimum) and imprecision (within-population variance) to the phenotypic mismatch (inaccuracy) of heterostylous morphs on a common scale. We illustrate this measure using data from three species of Primula (Primulaceae).


Asunto(s)
Flores/fisiología , Primula/fisiología , Adaptación Biológica , Flores/anatomía & histología , Polen/anatomía & histología
18.
Evolution ; 71(6): 1572-1586, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28440562

RESUMEN

Accurate estimates of trait evolvabilities are central to predicting the short-term evolutionary potential of populations, and hence their ability to adapt to changing environments. We quantify and evaluate the evolvability of herkogamy, the spatial separation of male and female structures in flowers, a key floral trait associated with variation in mating systems. We compiled genetic-variance estimates for herkogamy and related floral traits, computed evolvabilities, and compared these among trait groups and among species differing in their mating systems. When measured in percentage of its own size, the median evolvability of herkogamy was an order of magnitude greater than the evolvability of other floral size measurements, and was generally not strongly constrained by genetic covariance between its components (pistil and stamen lengths). Median evolvabilities were similar across mating systems, with only a tendency toward reduction in highly selfing taxa. We conclude that herkogamy has the potential to evolve rapidly in response to changing environments. This suggests that the extensive variation in herkogamy commonly observed among closely related populations and species may result from rapid adaptive tracking of fitness optima determined by variation in pollinator communities or other selective factors.


Asunto(s)
Evolución Biológica , Flores , Variación Genética , Fenotipo , Fenómenos Fisiológicos de las Plantas , Plantas , Polinización , Reproducción
19.
Ecology ; 98(1): 278-282, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27893936
20.
Am J Bot ; 103(3): 522-31, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26451034

RESUMEN

PREMISE OF THE STUDY: Competition among pollen grains from a single donor is expected to increase the quality of the offspring produced because of the recessive deleterious alleles expressed during pollen-tube growth. However, evidence for such an effect is inconclusive; a large number of studies suffer from confounding variation in pollen competition with variation in pollen load. METHODS: In this study, we tested the effect of pollen competition on offspring performance independently of pollen-load variation. We compared seed mass and early seedling performance in Dalechampia scandens (Euphorbiaceae) between crosses in which variation in pollen competition was achieved, without variation in pollen load, by manipulating the dispersion of pollen grains on the stigmas. KEY RESULTS: Despite a large sample size (211 crosses on 20 maternal plants), we failed to find an effect of pollen competition on seed characteristics or early seedling performance. Paternal effects were always limited, and pollen competition never reduced the within-father (residual) variance. CONCLUSION: These results suggest that limited within-donor variation in genetic quality of pollen grains reduces the potential benefits of pollen competition in the study population. The lack of paternal effects on early sporophyte performance further suggests that benefits of pollen competition among pollen from multiple donors should be limited as well, and it raises questions about the significance of pollen competition as a mechanism of sexual selection.


Asunto(s)
Euphorbiaceae/fisiología , Polen/fisiología , Evolución Biológica , Cotiledón/fisiología , Germinación , Modelos Biológicos , Tamaño de los Órganos , Semillas/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA