Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 36(2): 405-18, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758833

RESUMEN

Generalized spike-wave seizures involving abnormal synchronization of cortical and underlying thalamic circuitry represent a major category of childhood epilepsy. Inborn errors of Cacna1a, the P/Q-type voltage-gated calcium channel α subunit gene, expressed throughout the brain destabilize corticothalamic rhythmicity and produce this phenotype. To determine the minimal cellular lesion required for this network disturbance, we used neurotensin receptor 1 (Ntsr1) cre-driver mice to ablate floxed Cacna1a in layer VI pyramidal neurons, which supply the sole descending cortical synaptic input to thalamocortical relay cells and reticular interneurons and activate intrathalamic circuits. Targeted Cacna1a ablation in layer VI cells resulted in mice that display a robust spontaneous spike-wave absence seizure phenotype accompanied by behavioral arrest and inhibited by ethosuximide. To verify the selectivity of the molecular lesion, we determined that P/Q subunit proteins were reduced in corticothalamic relay neuron terminal zones, and confirmed that P/Q-mediated glutamate release was reduced at these synapses. Spike-triggered exocytosis was preserved by N-type calcium channel rescue, demonstrating that evoked release at layer VI terminals relies on both P/Q and N-type channels. Whereas intrinsic excitability of the P/Q channel depleted layer VI neurons was unaltered, T-type calcium currents in the postsynaptic thalamic relay and reticular cells were dramatically elevated, favoring rebound bursting and seizure generation. We find that an early P/Q-type release defect, limited to synapses of a single cell-type within the thalamocortical circuit, is sufficient to remodel synchronized firing behavior and produce a stable generalized epilepsy phenotype. SIGNIFICANCE STATEMENT: This study dissects a critical component of the corticothalamic circuit in spike-wave epilepsy and identifies the developmental importance of P/Q-type calcium channel-mediated presynaptic glutamate release at layer VI pyramidal neuron terminals. Genetic ablation of Cacna1a in layer VI neurons produced synchronous spike-wave discharges in the cortex and thalamus that were inhibited by ethosuximide. These mice also displayed N-type calcium channel compensation at descending thalamic synapses, and consistent with other spike-wave models increased low-threshold T-type calcium currents within postsynaptic thalamic relay and reticular neurons. These results demonstrate, for the first time, that preventing the developmental homeostatic switch from loose to tightly coupled synaptic release at a single class of deep layer cortical excitatory output neurons results in generalized spike-wave epilepsy.


Asunto(s)
Canales de Calcio Tipo N/deficiencia , Epilepsia Tipo Ausencia/patología , Neuronas/patología , Tálamo/patología , Corteza Visual/patología , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Canales de Calcio Tipo N/genética , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Etosuximida/uso terapéutico , Potenciales Postsinápticos Excitadores/genética , Femenino , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos Motores/etiología , Trastornos Motores/genética , Mutación/genética , Tiempo de Reacción/genética , Receptores de Neurotensina/metabolismo
2.
Neuron ; 83(5): 1159-71, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25189211

RESUMEN

Sudden unexplained death in epilepsy (SUDEP) is the most common cause of premature mortality in epilepsy and was linked to mutations in ion channels; however, genes within the channel protein interactome might also represent pathogenic candidates. Here we show that mice with partial deficiency of Sentrin/SUMO-specific protease 2 (SENP2) develop spontaneous seizures and sudden death. SENP2 is highly enriched in the hippocampus, often the focus of epileptic seizures. SENP2 deficiency results in hyper-SUMOylation of multiple potassium channels known to regulate neuronal excitability. We demonstrate that the depolarizing M-current conducted by Kv7 channel is significantly diminished in SENP2-deficient hippocampal CA3 neurons, primarily responsible for neuronal hyperexcitability. Following seizures, SENP2-deficient mice develop atrioventricular conduction blocks and cardiac asystole. Both seizures and cardiac conduction blocks can be prevented by retigabine, a Kv7 channel opener. Thus, we uncover a disease-causing role for hyper-SUMOylation in the nervous system and establish an animal model for SUDEP.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Muerte Súbita , Canales de Potasio KCNQ/metabolismo , Convulsiones/genética , Convulsiones/fisiopatología , Estimulación Acústica , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Análisis de Varianza , Animales , Animales Recién Nacidos , Células Cultivadas , Cisteína Endopeptidasas/genética , Modelos Animales de Enfermedad , Estimulación Eléctrica , Electrocardiografía , Electroencefalografía , Hipocampo/citología , Inmunoprecipitación , Técnicas In Vitro , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Convulsiones/patología
3.
Epilepsia ; 55(2): e6-12, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24372310

RESUMEN

Advanced variant detection in genes underlying risk of sudden unexpected death in epilepsy (SUDEP) can uncover extensive epistatic complexity and improve diagnostic accuracy of epilepsy-related mortality. However, the sensitivity and clinical utility of diagnostic panels based solely on established cardiac arrhythmia genes in the molecular autopsy of SUDEP is unknown. We applied the established clinical diagnostic panels, followed by sequencing and a high density copy number variant (CNV) detection array of an additional 253 related ion channel subunit genes to analyze the overall genomic variation in a SUDEP of the 3-year-old proband with severe myoclonic epilepsy of infancy (SMEI). We uncovered complex combinations of single nucleotide polymorphisms and CNVs in genes expressed in both neurocardiac and respiratory control pathways, including SCN1A, KCNA1, RYR3, and HTR2C. Our findings demonstrate the importance of comprehensive high-resolution variant analysis in the assessment of personally relevant SUDEP risk. In this case, the combination of de novo single nucleotide polymorphisms (SNPs) and CNVs in the SCN1A and KCNA1 genes, respectively, is suspected to be the principal risk factor for both epilepsy and premature death. However, consideration of the overall biologically relevant variant complexity with its extensive functional epistatic interactions reveals potential personal risk more accurately.


Asunto(s)
Muerte Súbita/patología , Epilepsias Mioclónicas/diagnóstico , Epilepsias Mioclónicas/genética , Genómica/métodos , Canal de Potasio Kv.1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Secuencia de Aminoácidos , Autopsia , Preescolar , Variaciones en el Número de Copia de ADN/genética , Humanos , Canal de Potasio Kv.1.1/química , Masculino , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.1/química , Factores de Riesgo
4.
J Neurosci ; 33(4): 1651-9, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23345237

RESUMEN

Neuronal network hyperexcitability underlies the pathogenesis of seizures and is a component of some degenerative neurological disorders such as Alzheimer's disease (AD). Recently, the microtubule-binding protein tau has been implicated in the regulation of network synchronization. Genetic removal of Mapt, the gene encoding tau, in AD models overexpressing amyloid-ß (Aß) decreases hyperexcitability and normalizes the excitation/inhibition imbalance. Whether this effect of tau removal is specific to Aß mouse models remains to be determined. Here, we examined tau as an excitability modifier in the non-AD nervous system using genetic deletion of tau in mouse and Drosophila models of hyperexcitability. Kcna1(-/-) mice lack Kv1.1-delayed rectifier currents and exhibit severe spontaneous seizures, early lethality, and megencephaly. Young Kcna1(-/-) mice retained wild-type levels of Aß, tau, and tau phospho-Thr(231). Decreasing tau in Kcna1(-/-) mice reduced hyperexcitability and alleviated seizure-related comorbidities. Tau reduction decreased Kcna1(-/-) video-EEG recorded seizure frequency and duration as well as normalized Kcna1(-/-) hippocampal network hyperexcitability in vitro. Additionally, tau reduction increased Kcna1(-/-) survival and prevented megencephaly and hippocampal hypertrophy, as determined by MRI. Bang-sensitive Drosophila mutants display paralysis and seizures in response to mechanical stimulation, providing a complementary excitability assay for epistatic interactions. We found that tau reduction significantly decreased seizure sensitivity in two independent bang-sensitive mutant models, kcc and eas. Our results indicate that tau plays a general role in regulating intrinsic neuronal network hyperexcitability independently of Aß overexpression and suggest that reducing tau function could be a viable target for therapeutic intervention in seizure disorders and antiepileptogenesis.


Asunto(s)
Epilepsia/metabolismo , Epilepsia/fisiopatología , Red Nerviosa/fisiopatología , Proteínas tau/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Drosophila , Electroencefalografía , Ensayo de Inmunoadsorción Enzimática , Epilepsia/genética , Femenino , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp
5.
J Cell Physiol ; 226(7): 1879-88, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21506118

RESUMEN

The majority of malignant primary brain tumors are gliomas, derived from glial cells. Grade IV gliomas, Glioblastoma multiforme, are extremely invasive and the clinical prognosis for patients is dismal. Gliomas utilize a number of proteins and pathways to infiltrate the brain parenchyma including ion channels and calcium signaling pathways. In this study, we investigated the localization and functional relevance of transient receptor potential canonical (TRPC) channels in glioma migration. We show that gliomas are attracted in a chemotactic manner to epidermal growth factor (EGF). Stimulation with EGF results in TRPC1 channel localization to the leading edge of migrating D54MG glioma cells. Additionally, TRPC1 channels co-localize with the lipid raft proteins, caveolin-1 and ß-cholera toxin, and biochemical assays show TRPC1 in the caveolar raft fraction of the membrane. Chemotaxis toward EGF was lost when TRPC channels were pharmacologically inhibited or by shRNA knockdown of TRPC1 channels, yet without affecting unstimulated cell motility. Moreover, lipid raft integrity was required for gliomas chemotaxis. Disruption of lipid rafts not only impaired chemotaxis but also impaired TRPC currents in whole cell recordings and decreased store-operated calcium entry as revealed by ratiomeric calcium imaging. These data indicated that TRPC1 channel association with lipid rafts is essential for glioma chemotaxis in response to stimuli, such as EGF.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Quimiotaxis , Glioma/metabolismo , Canales Catiónicos TRPC/metabolismo , Neoplasias Encefálicas/patología , Señalización del Calcio , Caveolina 1/metabolismo , Línea Celular Tumoral , Quimiotaxis/efectos de los fármacos , Toxina del Cólera/metabolismo , Colesterol/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Glioma/patología , Humanos , Microdominios de Membrana/metabolismo , Potenciales de la Membrana , Moduladores del Transporte de Membrana/farmacología , Invasividad Neoplásica , Técnicas de Placa-Clamp , Interferencia de ARN , Canales Catiónicos TRPC/efectos de los fármacos , Canales Catiónicos TRPC/genética
6.
Pflugers Arch ; 461(2): 295-306, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21120665

RESUMEN

Movement toward the source of a chemoattractant gradient is a basic cellular property in health and disease. Enhanced migration during metastasis involves deregulated growth factor signaling. Growth factor stimulation and cell migration converge both on the important second messenger Ca(2+). To date, the molecular identification of Ca(2+) entry pathways activated by growth factors during chemotaxis is still an open issue. We investigated the involvement of the nonselective Ca(2+) channel TRPC1 (transient receptor potential canonical 1) in FGF-2 guided chemotaxis by means of time-lapse video microscopy and by functional Ca(2+) measurements. To specifically address TRPC1 function in transformed MDCK cells we altered the expression levels by siRNA or overexpression. We report that TRPC1 channels are required for the orientation of transformed MDCK cells in FGF-2 gradients because TRPC1 knockdown or pharmacological blockade prevented chemotaxis. Stimulation with FGF-2 triggered an immediate Ca(2+) influx via TRPC1 channels that depended on phospholipase C and phosphatidylinositol 3-kinase signaling. Impeding this Ca(2+) influx abolished chemotaxis toward FGF-2. This functional connection correlated with clustering of FGF receptors and TRPC1 channels as was observed by immunolabeling. These findings show the important interplay between growth factor signaling and Ca(2+) influx in chemotaxis.


Asunto(s)
Quimiotaxis/fisiología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Canales Catiónicos TRPC/fisiología , Androstadienos/farmacología , Animales , Calcio/metabolismo , Señalización del Calcio , Línea Celular , Perros , Estrenos/farmacología , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Péptidos/farmacología , Pirrolidinonas/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Venenos de Araña/farmacología , Wortmanina
7.
J Biol Chem ; 285(44): 33885-97, 2010 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-20663894

RESUMEN

When replete with zinc and copper, amyotrophic lateral sclerosis (ALS)-associated mutant SOD proteins can protect motor neurons in culture from trophic factor deprivation as efficiently as wild-type SOD. However, the removal of zinc from either mutant or wild-type SOD results in apoptosis of motor neurons through a copper- and peroxynitrite-dependent mechanism. It has also been shown that motor neurons isolated from transgenic mice expressing mutant SODs survive well in culture but undergo apoptosis when exposed to nitric oxide via a Fas-dependent mechanism. We combined these two parallel approaches for understanding SOD toxicity in ALS and found that zinc-deficient SOD-induced motor neuron death required Fas activation, whereas the nitric oxide-dependent death of G93A SOD-expressing motor neurons required copper and involved peroxynitrite formation. Surprisingly, motor neuron death doubled when Cu,Zn-SOD protein was either delivered intracellularly to G93A SOD-expressing motor neurons or co-delivered with zinc-deficient SOD to nontransgenic motor neurons. These results could be rationalized by biophysical data showing that heterodimer formation of Cu,Zn-SOD with zinc-deficient SOD prevented the monomerization and subsequent aggregation of zinc-deficient SOD under thiol-reducing conditions. ALS mutant SOD was also stabilized by mutating cysteine 111 to serine, which greatly increased the toxicity of zinc-deficient SOD. Thus, stabilization of ALS mutant SOD by two different approaches augmented its toxicity to motor neurons. Taken together, these results are consistent with copper-containing zinc-deficient SOD being the elusive "partially unfolded intermediate" responsible for the toxic gain of function conferred by ALS mutant SOD.


Asunto(s)
Mutación , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis , Quelantes/farmacología , Cobre/química , Cinética , Neuronas Motoras/metabolismo , Neuronas/metabolismo , Óxido Nítrico/química , Ácido Peroxinitroso/química , Proteínas/química , Ratas
8.
Glia ; 58(10): 1145-56, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20544850

RESUMEN

Despite decades of research, primary brain tumors, gliomas, lack effective treatment options and present a huge clinical challenge. Particularly, the most malignant subtype, Glioblastoma multiforme, proliferates extensively and cells often undergo incomplete cell divisions, resulting in multinucleated cells. We now present evidence that multinucleated glioma cells result from the functional loss of transient receptor potential canonical 1 (TRPC1) channels, plasma membrane proteins involved in agonist-induced calcium entry and reloading of intracellular Ca(2+) stores. Pharmacological inhibition or shRNA mediated suppression of TRPC1 causes loss of functional channels and store-operated calcium entry in D54MG glioma cells. This is associated with reduced cell proliferation and, frequently, with incomplete cell division. The resulting multinucleated cells are reminiscent of those found in patient biopsies. In a flank tumor model, tumor size was significantly decreased when TRPC1 expression was disrupted using a doxycycline inducible shRNA knockdown approach. These results suggest that TRPC1 channels play an important role in glioma cell division most likely by regulating calcium signaling during cytokinesis.


Asunto(s)
Proliferación Celular , Citocinesis/fisiología , Glioma/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Antineoplásicos/farmacología , Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocinesis/efectos de los fármacos , Doxiciclina/farmacología , Técnicas de Silenciamiento del Gen , Glioma/tratamiento farmacológico , Humanos , Ratones , Ratones Desnudos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Distribución Aleatoria , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/genética
9.
J Mol Biol ; 373(4): 877-90, 2007 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17888947

RESUMEN

Over 130 mutations to copper, zinc superoxide dismutase (SOD) are implicated in the selective death of motor neurons found in 25% of patients with familial amyotrophic lateral sclerosis (ALS). Despite their widespread distribution, ALS mutations appear positioned to cause structural and misfolding defects. Such defects decrease SOD's affinity for zinc, and loss of zinc from SOD is sufficient to induce apoptosis in motor neurons in vitro. To examine the importance of the zinc site in the structure and pathogenesis of human SOD, we determined the 2.0-A-resolution crystal structure of a designed zinc-deficient human SOD, in which two zinc-binding ligands have been mutated to hydrogen-bonding serine residues. This structure revealed a 9 degrees twist of the subunits, which opens the SOD dimer interface and represents the largest intersubunit rotational shift observed for a human SOD variant. Furthermore, the electrostatic loop and zinc-binding subloop were partly disordered, the catalytically important Arg143 was rotated away from the active site, and the normally rigid intramolecular Cys57-Cys146 disulfide bridge assumed two conformations. Together, these changes allow small molecules greater access to the catalytic copper, consistent with the observed increased redox activity of zinc-deficient SOD. Moreover, the dimer interface is weakened and the Cys57-Cys146 disulfide is more labile, as demonstrated by the increased aggregation of zinc-deficient SOD in the presence of a thiol reductant. However, equimolar Cu,Zn SOD rapidly forms heterodimers with zinc-deficient SOD (t1/2 approximately 15 min) and prevents aggregation. The stabilization of zinc-deficient SOD as a heterodimer with Cu,Zn SOD may contribute to the dominant inheritance of ALS mutations. These results have general implications for the importance of framework stability on normal metalloenzyme function and specific implications for the role of zinc ion in the fatal neuropathology associated with SOD mutations.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Zinc/metabolismo , Esclerosis Amiotrófica Lateral/genética , Sitios de Unión , Cobre/metabolismo , Cristalografía por Rayos X/métodos , Dimerización , Transferencia Resonante de Energía de Fluorescencia , Humanos , Modelos Biológicos , Modelos Moleculares , Mutación , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Superóxido Dismutasa/genética
10.
Glia ; 54(3): 223-33, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16817201

RESUMEN

Ca(2+)-activated K(+) (K(Ca)) channels are a unique family of ion channels because they are capable of directly communicating calcium signals to changes in cell membrane potential required for cellular processes including but not limited to cellular proliferation and migration. It is now possible to distinguish three families of K(Ca) channels based on differences in their biophysical and pharmacological properties as well as genomic sequence. Using a combination of biochemical, molecular, and biophysical approaches, we show that human tumor cells of astrocytic origin, i.e. glioma cells, express transcripts for all three family members of K(Ca) channels including BK, IK, and all three SK channel types (SK1, SK2, and SK3). The use of selective pharmacological inhibitors shows prominent expression of currents that are inhibited by the BK channel specific inhibitors iberiotoxin and paxilline. However, despite the presence of transcripts for IK and SK, neither clotrimazole, an inhibitor of IK channels, nor apamin, known to block most SK channels inhibited any current. The exclusive expression of functional BK channels was further substantiated by shRNA knockdown experiments, which selectively reduced iberiotoxin sensitive currents. Western blotting of patient biopsies with antibodies specific for all three KCa channel types further substantiated the exclusive expression of BK type KCa channels in vivo. This finding is in sharp contrast to other cancers that express primarily IK channels.


Asunto(s)
Canales de Potasio Calcio-Activados/genética , Línea Celular Tumoral , Glioma , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Técnicas de Placa-Clamp , Canales de Potasio Calcio-Activados/fisiología , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sistemas de Mensajero Secundario , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...