Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15161, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956141

RESUMEN

Correlated states of light, both classical and quantum, can find useful applications in the implementation of several imaging techniques. Among the employed sources, pseudo-thermal states, generated by the passage of a laser beam through a diffuser, represent the standard choice. To produce light with a higher level of correlation, in this work we consider and characterize the speckled-speckle field obtained with two diffusers using both a numerical simulation and an experimental implementation. In order to discuss the potential usefulness of super-thermal light in imaging protocols, we analyze the behavior of some figures of merit, namely the contrast, the signal-to-noise ratio and the image resolution. The obtained results clarify the possible advantages offered by this kind of light, and at the same time better emphasize the reasons why it does not outperform pseudo-thermal light.

2.
Entropy (Basel) ; 26(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38667867

RESUMEN

Quantum walks have proven to be a universal model for quantum computation and to provide speed-up in certain quantum algorithms. The discrete-time quantum walk (DTQW) model, among others, is one of the most suitable candidates for circuit implementation due to its discrete nature. Current implementations, however, are usually characterized by quantum circuits of large size and depth, which leads to a higher computational cost and severely limits the number of time steps that can be reliably implemented on current quantum computers. In this work, we propose an efficient and scalable quantum circuit implementing the DTQW on the 2n-cycle based on the diagonalization of the conditional shift operator. For t time steps of the DTQW, the proposed circuit requires only O(n2+nt) two-qubit gates compared to the O(n2t) of the current most efficient implementation based on quantum Fourier transforms. We test the proposed circuit on an IBM quantum device for a Hadamard DTQW on the 4-cycle and 8-cycle characterized by periodic dynamics and by recurrent generation of maximally entangled single-particle states. Experimental results are meaningful well beyond the regime of few time steps, paving the way for reliable implementation and use on quantum computers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA